• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (10): 1819-1829.

• 图形与图像 • 上一篇    下一篇

面向小型无人机目标的快速视觉检测与跟踪算法

底佳浩,铁俊波,周理,王永文   

  1. (1.国防科技大学计算机学院,湖南 长沙 410073;2.先进微处理器芯片与系统重点实验室,湖南 长沙 410073)

  • 收稿日期:2024-10-12 修回日期:2024-11-01 出版日期:2025-10-25 发布日期:2025-10-29
  • 基金资助:
    国家自然科学基金(62203457);高层次科技创新人才工程人选自主科研项目(22-TDRCJH-02-006)

A fast visual detection and tracking algorithm for small UAV targets

DI Jiahao1,2,TIE Junbo1,2,ZHOU Li1,2,WANG Yongwen1,2   

  1. (1.College of Computer Science and Technology,National University of Defense Technology,Changsha 410073;
    2.Key Laboratory of Advanced Microprocessor Chips and Systems,Changsha 410073,China)
  • Received:2024-10-12 Revised:2024-11-01 Online:2025-10-25 Published:2025-10-29

摘要: 小型无人机在多个领域展现出巨大潜力,但可能导致如非法测绘、侦察及干扰航空秩序等滥用行为,因此亟需有效的检测与跟踪策略。传统雷达在复杂城市环境中跟踪小型无人机存在局限,而基于视觉的深度学习方法虽具高精度,但计算开销大。为解决上述挑战,提出一种基于轻量化YOLOv3-tiny与交互式多模型卡尔曼滤波(IMM-KF)的检测与跟踪算法。YOLOv3-tiny用于低频检测,IMM-KF通过高频预测以及多运动模型的状态更新实现跟踪,有效降低算力需求,并且能应对目标被遮挡时的丢失问题。实验结果显示,该算法在复杂城市环境中检测与跟踪精度达98.33%,实时覆盖率达73.6%,显著提升了跟踪效率及稳定性,满足无人机监管需求。

关键词: 交互式多模型卡尔曼滤波器, 视觉跟踪, YOLO算法, XTDrone环境

Abstract: Small unmanned aerial vehicles (UAVs) show great potential in multiple fields, but they may lead to abusive behaviors such as illegal mapping, reconnaissance, and interference with aviation order. Therefore, effective detection and tracking strategies are urgently needed. Traditional radars have limitations in tracking small UAVs in complex urban environments, while vision-based deep learning methods, although with high accuracy, have large computational overhead. To address the above challenges, this paper proposes a detection and tracking algorithm based on lightweight YOLOv3-tiny and interactive multiple model Kalman filter (IMM-KF). YOLOv3-tiny is used for low-frequency detection, and IMM-KF realizes tracking through high-frequency prediction and state updates of multiple motion models, which effectively reduces the computational power requirements and can deal with the problem of target loss when the target is occluded. Experimental results show that the detection and tracking accuracy of this algorithm in complex urban environments reaches 98.33%, with a real-time coverage rate of 73.6%, which significantly improves tracking efficiency and stability and meets the needs of UAV supervision.

Key words: interactive multiple model Kalman filter, visual tracking, YOLO algorithm, XTDrone environment