• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (10): 1841-1852.

• 图形与图像 • 上一篇    下一篇

双先验引导的注意力特征聚合去雾生成对抗网络

王燕,胡津源,刘晶晶,陈燕燕   

  1. (兰州理工大学计算机与通信学院,甘肃 兰州 730050)
  • 收稿日期:2024-04-01 修回日期:2024-05-14 出版日期:2025-10-25 发布日期:2025-10-29
  • 基金资助:
    国家自然科学基金(62266030)

A dual-prior guided attention feature aggregation defogging generative adversarial network

WANG Yan,HU Jinyuan,LIU Jingjing,CHEN Yanyan   

  1.  (School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China)
  • Received:2024-04-01 Revised:2024-05-14 Online:2025-10-25 Published:2025-10-29

摘要: 图像去雾是计算机视觉领域中一个具有挑战性的热点问题。现有的去雾方法通常使用单一的卷积神经网络(CNN)来解决问题,但此类方法缺乏细节恢复机制,并且在非均匀雾情况下去雾性能较差。为了解决上述2个问题,提出了一个双先验引导的注意力特征聚合去雾生成对抗网络,暗通道先验和语义先验分别引导图像广义特征和纹理细节的恢复。其中,生成器采用参数共享编码器提取特征,添加了注意力特征聚合块(AFAB)对多尺度特征进行聚合增强,并通过解码多尺度特征恢复无雾图像,最后用多尺度判别器监督无雾图像的恢复。此外,考虑到图像中可能存在雾的不均匀分布,提出了坐标注意力残差块(CARB),它能自适应地分配权重,使网络关注图像的重要特征;同时,采用残差聚合的方式通过3个CARB构造了坐标注意力密集残差组(CARG),使得残差特征能被充分利用。实验结果表明,提出的网络在合成有雾图像数据集和现实有雾图像数据集上均表现优异。

关键词: 图像去雾, 生成对抗网络, 双先验引导, 注意力特征聚合, 参数共享编码器, 坐标注意力

Abstract: Image defogging is a challenging and hot issue in the field of computer vision. Existing defogging methods usually use a single convolutional neural network (CNN) to solve the problem, but such methods lack  detail recovery mechanism and perform poorly in the case of non-uniform fog. To address the above two problems, a dual-prior guided attention feature aggregation defogging generative adversarial network is proposed, where the dark channel prior and semantic prior respectively guide the recovery of generalized features and texture details of the images. The generator uses a parameter-sharing encoder to extract features, adds an attention feature aggregation block (AFAB) to aggregate and enhance multi-scale features, and recovers the fog-free image by decoding multi-scale features. Finally, a multi-scale discriminator is used to supervise the recovery of the fog-free image. In addition, considering the possible uneven distribution of fog in the image, a coordinate attention residual block (CARB) is proposed, which can adaptively assign weights to make the network focus on the important features of the image. At the same time, a coordinate attention dense residual group (CARG) is constructed through three CARBs using residual aggregation, so that residual features can be fully utilized.Experimental results show that the proposed network performs excellently on both synthetic foggy image datasets and real foggy image datasets.


Key words: image defogging, generative adversarial network(GAN), dual-prior guided, attention feature aggregation, parameter-sharing encoder, coordinate attention