• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (11): 1984-1995.

• 计算机网络与信息安全 • 上一篇    下一篇

基于单类支持向量机的联邦学习安全聚合算法

朱海,缪祥华,郭施帆,覃叶贵,尚游   

  1. (1.昆明理工大学信息工程与自动化学院,云南 昆明 650504;2.云南省计算机技术应用重点实验室,云南 昆明 650504)

  • 收稿日期:2024-04-01 修回日期:2024-07-21 出版日期:2025-11-25 发布日期:2025-12-08
  • 基金资助:
    云南省高层次科技人才及创新团队选拔专项(202405AS350001)

A federated learning secure aggregation algorithm based on one-class support vector machine

ZHU Hai,MIAO Xianghua,GUO Shifan,QING Yegui,SHANG You   

  1. (1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650504;
    2.Yunnan Key Laboratory of Computer Technology Application,Kunming 650504,China)
  • Received:2024-04-01 Revised:2024-07-21 Online:2025-11-25 Published:2025-12-08

摘要: 联邦学习允许用户在不用上传数据的情况下参加模型训练,因此在学术界备受关注。然而,联邦学习也面临着来自恶意参与方的各种安全挑战,例如拜占庭攻击和标签翻转攻击。现有的防御算法在数据分布不均匀时防御效果会大打折扣。针对上述问题,提出一种基于单类支持向量机的联邦学习安全聚合算法。该算法通过单类支持向量机提取合适的特征参数,确定一个阈值,将正常数据和异常数据分开。由于其构建最优超平面的能力能有效区分正常数据和异常数据,而且在不同数据下能选择更适合的阈值,因此具有较强的泛化能力和鲁棒性。通过一系列攻防实验,并使用4种不同的防御算法进行比较,实验结果表明,在不同比例的恶意客户端的环境中,无论数据分布均匀或不均匀,所提算法都能有效防御攻击。


关键词: 联邦学习, 拜占庭攻击, 标签翻转攻击, 单类支持向量机

Abstract: Federated learning has garnered significant attention in academia as it enables users to participate in model training without uploading their data. However, federated learning also faces various security challenges from malicious participants, such as Byzantine attacks and label flipping attacks. Existing defense methods exhibit diminished effectiveness under unevenly distributed data. To address these issues, this paper proposes a secure aggregation algorithm  in federated learning based on the one-class support vector machine (OC-SVM). This algorithm extracts appropriate feature parameters using OC-SVM and determines a threshold to separate normal data from anomalous data. Owing to its ability to construct an optimal hyperplane, the algorithm can effectively distinguish between normal and anomalous data. Moreover, it can select a more suitable threshold under different data conditions, demonstrating strong generalization capability and robustness. Through a series of experiments comparing the proposed algorithm with four different defense algorithms, the results show that, in environments with varying proportions of malicious clients and regardless of whether the data distribution is uniform or not, the proposed algorithm can effectively defend against attacks.


Key words: federated learning, Byzantine attack, label flipping attack, one-class support vector machine