计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (11): 1984-1995.
朱海,缪祥华,郭施帆,覃叶贵,尚游
ZHU Hai,MIAO Xianghua,GUO Shifan,QING Yegui,SHANG You
摘要: 联邦学习允许用户在不用上传数据的情况下参加模型训练,因此在学术界备受关注。然而,联邦学习也面临着来自恶意参与方的各种安全挑战,例如拜占庭攻击和标签翻转攻击。现有的防御算法在数据分布不均匀时防御效果会大打折扣。针对上述问题,提出一种基于单类支持向量机的联邦学习安全聚合算法。该算法通过单类支持向量机提取合适的特征参数,确定一个阈值,将正常数据和异常数据分开。由于其构建最优超平面的能力能有效区分正常数据和异常数据,而且在不同数据下能选择更适合的阈值,因此具有较强的泛化能力和鲁棒性。通过一系列攻防实验,并使用4种不同的防御算法进行比较,实验结果表明,在不同比例的恶意客户端的环境中,无论数据分布均匀或不均匀,所提算法都能有效防御攻击。