• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (11): 2029-2037.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于保持节点簇分布的图提示少样本节点分类

谢秋园,李秋瑶,柴变芳   

  1. (河北地质大学信息工程学院,河北 石家庄 050031)

  • 收稿日期:2025-06-09 修回日期:2025-09-22 出版日期:2025-11-25 发布日期:2025-12-08
  • 基金资助:
    河北省硕士在读研究生创新能力培养资助项目(CXZZSS2025104)

Graph prompting for few-shot node classification based on maintaining node cluster distribution

XIE Qiuyuan,LI Qiuyao,CHAI Bianfang   

  1. (School of Information Engineering,Hebei GEO University,Shijiazhuang 050031,China)
  • Received:2025-06-09 Revised:2025-09-22 Online:2025-11-25 Published:2025-12-08

摘要: 在图挖掘任务中,基于原型的图提示学习已被广泛视为提升图数据分析性能的有效手段。然而,在少样本节点分类场景下,现有方法存在无标签数据利用不充分导致类原型构建不准确以及对图拓扑结构信息利用不充分的问题,这些不足限制了图提示学习方法在下游任务中的效果。为此,提出了一种融合所有节点簇分布的图提示学习方法PNCD-GP,旨在通过更有效地利用无标签数据的簇分布和拓扑结构信息,提升图数据分析的性能和准确性。在预训练阶段,采用预测掩码和保持图节点聚类作为优化策略,以学习具有判别力的节点表示,缩小上下游任务之间的差距。在图提示阶段,在原始图中引入类原型虚拟节点作为提示,引入高阶信息增强图的拓扑结构,提升模型对图结构的理解和利用能力,并通过保持无标签样本与有标签节点的簇分布来学习提示。该方法能够构建更精准的原型向量,并利用类原型与节点表示的相似性进行节点分类。在多个公开图数据集上的实验结果表明,PNCD-GP方法在效率与准确率方面均有显著优势,验证了其在图提示学习领域的有效性和潜力。


关键词: 图挖掘, 图提示学习, 图神经网络, 少样本, 聚类

Abstract: In graph mining tasks, prototype-based graph prompt learning has been widely recognized as an effective method to enhance the performance of graph data analysis. However, in few-shot node classification scenarios, existing methods suffer from two key limitations: insufficient utilization of unlabeled data, which leads to inaccurate class prototype construction, and inadequate exploitation of graph topological structure information. These shortcomings restrict the effectiveness of graph prompt learning methods in downstream tasks. To address these issues, this paper proposes a graph prompt learning method that integrates the distribution of all node clusters, named PNCD-GP (prototype with node cluster distribution-graph prompt). This method aims to improve the performance and accuracy of graph data analysis by more effectively leveraging the cluster distribution of unlabeled data and topological structure information. In the pre-training phase, two optimization strategies, predicting masks and preserving graph node clustering, are adopted to learn discriminative node representations and narrow the gap between upstream and downstream tasks. In the graph prompting phase, class prototype virtual nodes are introduced into the original graph as prompts, and high-order information is incorporated to enhance the graph’s topological structure, thereby improving the model’s ability to understand and utilize graph structures. Additionally, prompts are learned by maintaining the cluster distribution between unlabeled samples and labeled nodes. This method enables the construction of more accurate prototype vectors and performs node classification by leveraging the similarity between class prototypes and node representations. Experimental results on multiple public graph datasets demonstrate that the PNCD-GP method exhibits significant advantages in both efficiency and accuracy, verifying its effectiveness and potential in the field of graph prompt learning.

Key words: graph mining, graph prompt learning, graph neural network, few-shot, clustering