• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (12): 2195-2203.

• 图形与图像 • 上一篇    下一篇

基于多级对抗均值教师网络的夜间城市景观语义分割

徐梦繁,黄微,古倬铭   

  1. (上海大学通信与信息工程学院,上海 200444)

  • 收稿日期:2024-02-05 修回日期:2024-07-30 出版日期:2025-12-25 发布日期:2026-01-06

A multi-level adversarial mean teacher network for semantic segmentation of nighttime urban landscape

XU Mengfan,HUANG Wei,GU Zhuoming   

  1. (School of Communication & Information Engineering,Shanghai University,Shanghai 200444,China)
  • Received:2024-02-05 Revised:2024-07-30 Online:2025-12-25 Published:2026-01-06

摘要: 针对目前方法对于夜间场景适应性不足导致的分割效果不佳问题,基于域适应提出一种多级对抗均值教师网络。所提出方法的分割流程可分为2个阶段:首先,使用课程式风格迁移策略选择黄昏场景为目标风格,并将昼夜图像变换为黄昏风格,从而将复杂的风格转换任务分解为2个更简单的任务,有助于实现输入风格对齐;其次,利用多级对抗均值教师网络在特征级和预测概率级分别执行对抗学习,多层次地实现源域与目标域间的域适应,有助于提高模型在不同域之间的泛化能力。另外,网络使用动态类域混合额外引入一个混合样本,使模型学习到更丰富的动态类特征。实验结果显示,该方法的模型在Dark Zurich,ACDC和Nighttime Driving数据集上的mIoU分别达到46.5%,37.9%和47.8%,这表明该方法可以有效改善适应能力,提升夜间城市景观的分割精度。

关键词: 域适应, 夜间语义分割, 风格迁移, 对抗学习, 域混合

Abstract: To address the issue of suboptimal segmentation performance caused by the inadequate adaptability of current methods to nighttime scenes, this paper proposes a multi-level adversarial mean teacher network based on domain adaptation. The proposed methods segmentation process operates in two stages: Firstly, a curriculum style transfer strategy selects dusk scenes as the target style and transforms both daytime and nighttime images into dusk-style images. This approach decomposes the complex style transfer task into two simpler tasks, facilitating input style alignment. Subsequently, the multi-level adversarial mean teacher network performs adversarial learning at both the feature level and prediction probability level, achieving domain adaptation between the source and target domains across multiple levels and enhancing the models generalization capability across different domains. Additionally, the network employs dynamic class-domain mixing to introduce an extra mixed sample, enabling the model to learn richer dynamic class features. Experimental results demonstrate that the methods model achieves mIoU of 46.5%, 37.9%, and 47.8% on Dark Zurich, ACDC, and Nighttime Driving datasets, respectively. These findings indicate that the proposed method effectively improves the  adaptability and enhances the segmentation accuracy for nighttime urban landscapes.

Key words: domain adaptation, nighttime semantic segmentation, style transfer, adversarial learning, domain mixup