• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (12): 2204-2215.

• 图形与图像 • 上一篇    下一篇

改进YOLOv8的航拍图像小目标检测模型

韦柳梅,罗雪梅,康健
  

  1. (1.贵州大学电气工程学院,贵州 贵阳 550025;2.华北理工大学电气工程学院,河北 唐山 063210)


  • 收稿日期:2024-05-04 修回日期:2024-06-28 出版日期:2025-12-25 发布日期:2026-01-06

An improved YOLOv8 small object detection model in aerial image#br#
#br#

WEI Liumei,LUO Xuemei,KANG Jian   

  1.  (1.College of Electrical Engineering,Guizhou University,Guiyang 550025;
    2.College of Electrical Engineering,North China University of Science and Technology,Tangshan 063210,China)
  • Received:2024-05-04 Revised:2024-06-28 Online:2025-12-25 Published:2026-01-06

摘要: 针对无人机航拍图像中小目标的检测精度低且易被漏检和误检等问题,提出了一种改进的小目标检测模型MDH-YOLOv8。首先,运用Focal-EIoU损失函数替换CIoU Loss,解决回归结果不准确的问题。设计小目标特征信息提取SAE模块,改善空间金字塔池化SPPF信息提取不足的问题,使模型同时关注图像中多个重点小目标区域。其次,提出可适应复杂几何形变的C2f_DCN模块,可变形卷积融合瓶颈层多次迭代,增强检测模型的鲁棒性。最后,新增一个专门针对小目标的检测头STDH模块,降低小目标的误检率和漏检率,提高检测精度。在VisDrone2019和DOTA数据集上验证实验结果,MDH-YOLOv8模型较YOLOv8模型,mAP@0.5提高了4.2个百分点,mAP@0.5:0.95提高了3.4个百分点。与目前小目标检测的主流模型相比,MDH-YOLOv8模型在满足轻量化的同时提高了对小目标的检测精度。

关键词: 小目标检测, YOLOv8模型, 空间金字塔池化, 可变形卷积, 小目标检测层

Abstract: To address the issues of low detection accuracy, frequent missed detections, and false detections of small objects in unmanned aerial vehicle (UAV) aerial images, this paper proposes an improved small-object detection model named MDH-YOLOv8. Firstly, the Focal-EIoU loss function is employed to replace the CIoU Loss, resolving the problem of inaccurate regression results. A Small- object feature information extraction SAE(self-attention information extraction) module is designed to mitigate the insufficient information extraction of the spatial pyramid pooling fast (SPPF) module, enabling the model to simultaneously focus on multiple key small-object regions within the image. Secondly, a C2f_DCN module adaptable to complex geometric deformations is introduced, where deformable convolutions are fused with multiple iterations of bottleneck layers to enhance the robustness of the detection model. Finally, a dedicated small-object detection head (STDH) module is added to reduce the false detection and missed detection rates of small objects, thereby improving detection accuracy. Experimental results on the VisDrone2019 and DOTA datasets demonstrate that the MDH-YOLOv8 model achieves a 4.2 percentage point increase in mAP@0.5 and a 3.4 percentage point  increase in mAP@ 0.5:0.95 compared to the YOLOv8 model. Compared to mainstream models for small-object detection, the MDH-YOLOv8 model improves detection accuracy for small objects while maintaining a lightweight design.



Key words: small object detection, YOLOv8 model, space pyramid pool, deformable convolution, small object detection layer