• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2026, Vol. 48 ›› Issue (1): 98-107.

• 图形与图像 • 上一篇    下一篇

基于FPGA的低照度图像增强算法的研究与实现

肖剑,李志斌,杨进,程鸿亮,胡欣   

  1. (1.长安大学电子与控制工程学院,陕西 西安 710064;2.西安北方光电科技防务有限公司,陕西 西安 710043)

  • 收稿日期:2024-01-08 修回日期:2024-08-11 出版日期:2026-01-25 发布日期:2026-01-25
  • 基金资助:
    陕西省秦创原“科学家+工程师”队伍建设项目(2024QCY-KXJ-161);咸阳市重点研发计划(L2024-ZDYF-ZDYF-GY-0004)

Research and implementation of a low-light image enhancement algorithm based on FPGA

XIAO Jian,LI Zhibin,YANG Jin,CHENG Hongliang,HU Xin   

  1. (1.School of Electronics and Control Engineering,Chang’an University,Xi’an  710064;
    2.Xi’an North Electro-optic Science & Technology Defense Co.,Ltd.,Xi’an 710043,China)
  • Received:2024-01-08 Revised:2024-08-11 Online:2026-01-25 Published:2026-01-25

摘要: 针对深度学习等软件方法实现低照度图像增强算法时,计算量大且复杂、实时性差等问题,实现了一种便于部署到FPGA上的基于Retinex模型的改进的低照度图像增强算法。该算法首先将输入的低照度图像进行RGB色彩空间到YCbCr色彩空间的转换,取空间中的Y分量作为初始照度分量对其进行自适应伽玛校正和双边滤波处理,提高初始照度分量亮度的同时实现对图像的降噪和对细节的增强,接着依据Retinex模型得到增强图像。将增强后的图像再次转换到YCbCr色彩空间,对Y分量进行多尺度细节增强后转换到RGB色彩空间,作为最终的增强结果输出。实验结果表明,将在FPGA上部署所提出的低照度图像增强算法和在MATLAB上进行算法仿真后的输出图像进行比较,两者的相似度指标SSIM接近1,肉眼很难分辨出两者的差别;在时钟频率为200 MHz时,处理一幅分辨率为1 280×720的图像仅需约21 ms;将所提出的算法部署在国产某型号的FPGA上时资源占用率较低,功耗为3.357 W,满足低功耗要求,具有较大的实用意义和工程应用价值。


关键词: 图像增强, FPGA, 自适应伽玛校正, 双边滤波, 多尺度细节增强

Abstract: To address the issues of high computational complexity, difficulty in achieving real-time performance, and other challenges associated with implementing low-light image enhancement algorithms using software methods such as deep learning, this paper presents an improved Retinex-model-based low-light image enhancement algorithm that is readily deployable on FPGAs. The algorithm begins by converting the input low-light image from the RGB color space to the YCbCr color space. The Y component in this space is then selected as the initial illuminance component and processed with adaptive Gamma correction and bilateral filtering. This process enhances the brightness of the initial illuminance component while simultaneously achieving noise reduction and detail enhancement in the image. Subsequently, the enhanced image is generated based on the Retinex model. The enhanced image is then converted back to the YCbCr color space, where the Y component undergoes multi-scale detail enhancement before being transformed back to the RGB color space as the final enhanced output. Experimental results demonstrate that when comparing the output images of the proposed low-light image enhancement algorithm deployed on an FPGA with those obtained through algorithm simulation on  MATLAB, the structural similarity index measure (SSIM)  is close to 1, making it difficult to distinguish between the two with the naked eye. At a clock frequency of 200 MHz, the algorithm processes a 1 280×720 resolution image in approximately 21 ms. Furthermore, when deployed on a domestic FPGA model, the proposed algorithm exhibits low resource utilization and consumes only 3.357 W of power, meeting low power requirements and demonstrating significant  practical and engineering application value.


Key words: image enhancement, field programmable gate array(FPGA), adaptive gamma correction, bilateral filtering, multi-scale detail enhancement