• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2026, Vol. 48 ›› Issue (1): 180-190.

• 人工智能与数据挖掘 • 上一篇    

基于知识点会话感知的知识追踪方法

王静,马慧芳,张梦媛   

  1. (1.西北师范大学计算机科学与工程学院,甘肃 兰州 730070;2.桂林电子科技大学广西可信软件重点实验室,广西 桂林 541004)

  • 收稿日期:2024-04-11 修回日期:2024-07-02 出版日期:2026-01-25 发布日期:2026-01-25
  • 基金资助:
    国家自然科学基金(62441701,62567007);甘肃省产业支撑项目(2022CYZC11);广西可信软件重点实验室项目(1x202302)

Knowledge concept-aware session modeling for knowledge tracing

WANG Jing,MA Huifang,ZHANG Mengyuan   

  1. (1.College of Computer Science & Engineering,Northwest Normal University,Lanzhou 730070;
    2.Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004,China)
  • Received:2024-04-11 Revised:2024-07-02 Online:2026-01-25 Published:2026-01-25

摘要: 知识追踪(KT)旨在根据学习者的历史学习记录动态建模他们不断变化的知识状态,在在线教育系统中发挥着重要作用。多数现有的KT方法将知识状态视为学习者从完成前一道习题到完成下一道习题的知识点掌握程度的转换模式,并将学习者的学习记录视为连续且均匀分布的数据。然而,现实中的学习记录被认为可以划分为不同的较短的会话。据此,提出了一种名为基于知识点会话感知的知识追踪方法KSMKT,旨在以更精细的粒度捕捉学习者知识状态的变化。具体而言,首先从知识点角度将学习者的历史学习记录划分为较短的会话。随后,提出了一个细粒度知识状态建模模块,该模块能够建模会话内和会话间的细粒度交互依赖性和知识状态变化。此外,还引入了一个全局知识熟练度建模模块,从整体的角度建模学习者的知识状态。在3个真实世界数据集上的大量实验结果表明,KSMKT优于大多数当前的基线方法,从而证明了KSMKT的有效性。


关键词: 智慧教育, 知识追踪, 序列建模, 注意力机制

Abstract: Knowledge tracing (KT) aims to dynamically model learners’ evolving knowledge states based on their historical learning records, and plays a significant role in online education systems. Most existing KT methods treat knowledge states as transition patterns of mastery levels of knowledge concepts from completing one exercise to completing the next, and consider learners’ learning records as continuous and uniformly distributed data. However, actual learning records are considered to be divisible into different shorter sessions. To address this, a method, called knowledge concept-aware session modeling for knowledge tracing (KSMKT), is proposed to capture learners’ knowledge state changes at a finer granularity. Specifically, learners’ historical learning records are divided into shorter sessions from the perspective of knowledge concepts. Subsequently, a fine-grained knowledge state modeling module is proposed to capture fine-grained interaction dependencies and knowledge state changes within and across sessions. Additionally, a global knowledge proficiency modeling module is introduced to model learners’ knowledge states from an overall perspective. Extensive experiments on 3 real-world datasets demonstrate that KSMKT outperforms most current baseline methods, thus proving the effectiveness of KSMKT.


Key words: intelligent education, knowledge tracing, sequence modeling, attention mechanism