• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2010, Vol. 32 ›› Issue (5): 30-33.

• • 上一篇    下一篇

一种新的基于Agent的神经网络隐层节点数的优化算法

高鹏毅1,陈传波1,秦升2,胡迎松1   

  1. (1.华中科技大学计算机学院,湖北 武汉 430074;2.爱丁堡大学信息学院,英国 爱丁堡EH8 9AB)
  • 收稿日期:2009-09-13 修回日期:2009-12-10 出版日期:2010-04-28 发布日期:2010-05-11
  • 通讯作者: 高鹏毅 E-mail:Pengyi_gao@mail.hust.edu.cn
  • 作者简介:高鹏毅(1965),男,湖北武汉人,博士生,研究方向为人工智能和计算机网络;陈传波,教授,博士生导师,研究方向为计算机应用和人工智能。

A Novel Algorithm to Optimize the Hidden Layer of Neural Networks

GAO Pengyi 1,CHEN Chuanbo1,QIN Sheng2,HU Yingsong1   

  1. (1.School of Computer Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;
    2.School of Informatics,University of Edinburgh,Edinburgh EH8 9AB,UK)
  • Received:2009-09-13 Revised:2009-12-10 Online:2010-04-28 Published:2010-05-11
  • Contact: GAO Pengyi E-mail:Pengyi_gao@mail.hust.edu.cn

摘要:

本文提出了一种新的基于Agent的神经网络隐层结构的优化算法(OHA)。该方法包括两个部分,分别由RL Agent 和NN Agent合作完成。RL Agent根据强化学习算法找到一个比当前节点数更优的解,并反馈给NN Agent。NN Agent据此构建相应的网络,并采用分层训练的算法对该网络进行优化,训练结果再发给RL Agent。在多次循环后,OHA算法就可以找到一个训练误差最小的全局最优解(权值及隐层节点数)。本文讨论了有关的算法、测试和结果分析。Iris数据集和危险评估数据集的测试结果表明,算法避免了盲目搜索造成的计算开销,明显改善了优化性能。

关键词: 神经网络, 隐层节点, 隐层结构优化, 智能代理;强化学习

Abstract:

This paper proposes a novel algorithm to Optimize the number of Hidden nodes based on Agent(OHA). This approach is completed by two cooperating agents, the RL agent and the NN agent. The RL agent searches better number of hidden nodes according to the reinforcement learning method, and the NN agent optimizes the weights of network with the number by using the separate learning algorithm. After much running, the best solution(weights and hidden nodes) is located. The optimization algorithms and tests are discussed. The test results obtained by using the Iris data set and the risk evaluation data set show the algorithm is better than those by the most commonly used optimization techniques.

Key words: neural networks, hidden node, hiddenlayer architecture optimization, agent, reinforcement learning

中图分类号: