• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (5): 45-47.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

基于信息粒度和连通强度的优化学习

王秀珍1,2,钟宁1,3,刘椿年4,顾伟泉2   

  1. (1.北京工业大学国际WIC研究院,北京 100022;2. 哈尔滨师范大学,黑龙江 哈尔滨 150301;
    3.日本前桥工科大学,日本 前桥;4.北京工业大学计算机学院,北京 100022)
  • 收稿日期:2009-09-03 修回日期:2009-12-06 出版日期:2010-04-28 发布日期:2010-05-11
  • 通讯作者: 王秀珍 E-mail:xzhnwang@gmail.com
  • 作者简介:王秀珍(1965),女,黑龙江哈尔滨人,博士生,副教授,CCF学生会员(E200014004G),研究方向为人工智能和认知学习;钟宁,教授,博士生导师,研究方向为人工智能和认知学习;刘椿年,教授,研究方向为人工智能;顾伟泉,研究馆员,研究方向为信息管理。
  • 基金资助:

    国家自然科学基金资助项目(60673015,08BTQ024)

Optimized Learning Based on Information Granularity and Connectivity

WANG Xiuzhen1,2,ZHONG Ning1,3,LIU Chunnian4,GU Weiquan2   

  1. (1.International WIC Institute,Beijing University of Technology,Beijing 100022;2.Harbin Normal University,Harbin 150301;
    3.Maebashi Institute of Technology,Maebashi,Japan;
    4.School of Computer Science,Beijing University of Technology,Beijing 100022,China)
  • Received:2009-09-03 Revised:2009-12-06 Online:2010-04-28 Published:2010-05-11
  • Contact: WANG Xiuzhen E-mail:xzhnwang@gmail.com

摘要:

针对具有分布式网络和复杂的拓扑结构的认知学习问题,本文提出一种动态的基于信息粒度和连通强度的自组织的认知优化学习系统。每个网络节点的信息粒在高聚合度的情况下,具有信息表示的完整性,知识系统中节点的自组聚合和节点间的强连通性是优化学习绩效的核心模型。利用信息粒的聚合度和信息粒间的连通性的概念,信息粒度的演进流程模拟认知学习过程的静态归约,连接强度演进流程对应于认知学习的动态模拟,这两个流程在学习系统中对每个输入样本完成一个完整的模拟认知与归约表达。以分布式拓扑结构为理论模型,给出了每个节点信息粒度以及节点之间的信息处理与传递的认知优化规范。

关键词: 分布式网络, 信息粒, 连通性, 聚合度, 拓扑结构

Abstract:

As for the problem of cognitive learning on distributed networks and complicated topological structures, the paper proposes a dynamic,information granularitybased and connectivitybased cognitive optimized  learning. The information granules of every network node hold the integrity of information expression under the condition of high degree of polymerization. Selfassembly polymerization of the nodes in the knowledge system and the strong connectivity between every two nodes are the kernel  model in the optimized learning result. The concept of polymerization degree of information granules and the connectivity among information granules, the static reduction of the evolution of the information granules which imitate the  cognitive learning process,and the dynamic imitation of connectivity intensity evolution which correspondes cognitive learning are used here. And the two processes accomplish a whole imitating cognition and reduction expression to every inputting sample in the learning system. This thesis aims to take the distributed topological structure as a theoretical model to propose the cognitive optimization rules for the information granularity of every node as well as the information procession and transmission among the nodes.

Key words: distributed network;information granules;connectivity;convergence;topological structure

中图分类号: