• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (3): 38-41.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

基于网络聚合行为的异常检测方法研究

苏彦君, 沈刚, 刘昕   

  1. (华中科技大学软件学院,湖北 武汉 430074)
  • 收稿日期:2008-09-24 修回日期:2008-12-23 出版日期:2010-03-10 发布日期:2010-03-10
  • 通讯作者: 苏彦君, E-mail:yj_su@163.com
  • 作者简介:苏彦君(1974),女,湖南冷水江人,工程师,研究方向为计算机应用技术。

Anomaly Detection Based on Aggregated  Network Behavior Metrics

 SU Yan-Jun, CHEN Gang, LIU Cuan   

  1. (School of Software,Huazhong University of Science and Technology,Wuhan 430074)
  • Received:2008-09-24 Revised:2008-12-23 Online:2010-03-10 Published:2010-03-10
  • Contact: SU Yan-Jun E-mail:yj_su@163.com

摘要:

异常检测是目前入侵检测领域中非常活跃的一个方向,其作为一种网络测量手段,对于分组报头的信息统计在很多网络管理任务中扮演着重要的角色。将网络分组中报头的信息按不同方式汇聚起来,可以有效地构成网络流量属性的度量。从中提取的特定的子集在理论上可用于刻画网络流量中的攻击行为特征。如果这些度量在无攻击情况下能够表现出相对的稳定性,而在发生攻击时相对敏感,则可用于判断攻击的发生。并利用主成份分析和信息增益对冗余特征进行删减,能够使得判断攻击时需要的开销降低,增加实时性。基于机器学习的分类器是判断攻击导致的异常的有效手段。根据所选取的度量指标设计了三种分类器。

关键词: 异常检测, 主成份分析, 信息增益, 支持向量机, 神经网络

Abstract:

Anomaly detection is a very active area of IDS. As a network measurement tool, anomaly detection plays an important role for a header statistical information in many network management tasks. Assembling the information of network packets can effectively constitute the network traffic measurement metrics. Extracting a specific subset from the metrics can be used to describe the flow of network attack characteristics. If these metrics show a relatively stable performance when there is no attack and a relatively sensitive manner when the attack occurs, they can be used to judge the attacks.And the redundant features are deleted by the use of principal component analysis and information gain.It can reduce spending and increase realtimeness. The classifier based on machine learning is an effective judgment method of the anomaly caused by network attacks.According to the selected metrics,we design three classifiers.

Key words: anomaly detection;principal components analysis;information gain;support vector machines;neural network

中图分类号: