• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (5): 48-50.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

基于扩展卡尔曼粒子滤波算法的神经网络训练

王法胜,郭权   

  1. (大连东软信息学院计算机科学与技术系,辽宁 大连 116023)
  • 收稿日期:2009-09-03 修回日期:2009-12-06 出版日期:2010-04-28 发布日期:2010-05-11
  • 通讯作者: 王法胜 E-mail:wangfasheng@neusoft.edu.cn
  • 作者简介:王法胜(1983),男,山东临沂人,硕士,讲师,研究方向为智能信息处理;郭权,博士,教授,研究方向为人工智能和网络安全。
  • 基金资助:

    国家863计划资助项目(2006AA01A124)

Neural Network Training Based on the Extended Kalman Particle Filter

WANG Fasheng,GUO Quan   

  1. (Deptartment of Computer Science and Technology,Dalian Neusoft Institute of Information,Dalian 116023,China)
  • Received:2009-09-03 Revised:2009-12-06 Online:2010-04-28 Published:2010-05-11
  • Contact: WANG Fasheng E-mail:wangfasheng@neusoft.edu.cn

摘要:

神经网络的训练是一种非线性系统的辨识问题,基本粒子滤波算法已被成功用于训练神经网络,但基本粒子滤波算法在建议分布的选择上并没有考虑当前时刻观测值的影响,本文针对该问题提出使用扩展卡尔曼滤波器来生成建议分布。由于扩展卡尔曼滤波器在传递近似建议分布的均值和协方差的过程中充分利用了观测值信息,从而可以更好地描述神经网络权值的后验概率分布。实验结果证明,使用扩展卡尔曼滤波器作为建议分布的粒子滤波算法性能明显优于基本粒子滤波算法。

关键词: 多层感知器, 神经网络训练, 扩展卡尔曼粒子滤波

Abstract:

Training neural networks can be viewed as an identification problem for a nonlinear dynamic system. The generic particle filter has been applied with success to neural network training, but the proposal distribution chosen by the generic particle filter does not incorporate the latest observations which can deteriorate the performance of the algorithm. In this paper, we propose to use the extended Kalman filter to generate proposal distribution in the particle filtering framework. The extended Kalman filter can make efficient use of the latest observations, and the generated proposal distribution can approximate the posterior distribution of neural network weights much better, which consequently improve the performance of the particle filter. The experimental results show that the proposed particle filter outperforms the generic particle filter.

Key words: multilayer perceptron;neural network training;extended Kalman particle filter

中图分类号: