• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (12): 72-77.

• 论文 • 上一篇    下一篇

基于强化学习的自适应多Agent系统的构造

沈〓乐,毛新军,董孟高   

  1. (国防科学技术大学计算机学院,湖南 长沙 410073)
  • 收稿日期:2010-09-23 修回日期:2010-12-29 出版日期:2011-12-24 发布日期:2011-12-25

The Construction of a Selfadaptive MultiAgent System Based on Reinforcement Learning

SHEN Le,MAO Xinjun,DONG Menggao   

  1. (School of Computer Science,National University of Defense Technology,Changsha 410073,China)
  • Received:2010-09-23 Revised:2010-12-29 Online:2011-12-24 Published:2011-12-25

摘要:

自适应系统所处的环境往往是不确定的,其变化事先难以预测,如何支持这种环境下复杂自适应系统的开发已经成为软件工程领域面临的一项重要挑战。强化学习是机器学习领域中的一个重要分支,强化学习系统能够通过不断试错的方式,学习环境状态到可执行动作的最优对应策略。本文针对自适应系统环境不确定的问题,将Agent技术与强化学习技术相结合,提出复杂自适应系统开发的核心运行机制和构造技术,从而使得所开发的自适应系统具备在不确定环境下适应环境变化的能力。论文通过案例分析阐述了如何基于学习机制来进行自适应多Agent系统的开发,验证了该机制和方法的有效性。

关键词: 强化学习, 自适应系统, 自适应多Agent系统

Abstract:

The environment of selfadaptive systems is often uncertain, and the changes are difficult to predict. To develop such complex selfadaptive software systems has become a great challenge in the domain of software engineering. Reinforcement learning is an important branch of machine learning. A reinforcement learning system can learn the optimal mapping policy from the states of environment to the actions by means of trailanderror. Aiming to deal with the uncertainty of environments, this paper combines the agent technology and the reinforcement learning technology together, and proposes an adaptive mechanism based on reinforcement learning and the corresponding approach to construct complex selfadaptive systems that can adapt to the changes of uncertain environments. A case is illustrated to validate the effectiveness of the proposed mechanism and approach.

Key words: reinforcement learning;selfadaptive system;selfadaptive multiagent system