• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (2): 118-123.doi: 10.3969/j.issn.1007130X.2011.

• 论文 • 上一篇    下一篇

基于CUDA的Adaboost算法并行实现

程峰,李德华   

  1. (华中科技大学图像识别与人工智能研究所,湖北 武汉 430074)
  • 收稿日期:2010-02-27 修回日期:2010-05-31 出版日期:2011-02-25 发布日期:2011-02-25
  • 通讯作者: 程峰 E-mail:chfwh@qq.com
  • 作者简介:程峰(1983),男,湖北武汉人,博士,研究方向为模式识别与智能系统。李德华(1946),男,广东丰顺人,教授,博士生导师,研究方向为人工智能、创造性思维、计算机视觉和模式识别。

CUDABased Parallel Implementation of the Adaboost Algorithm

CHENG Feng,LI Dehua   

  1. (Institute for Pattern Recognition and Artificial Intelligence,
    Huazhong University of Science and Technology,Wuhan 430074,China)
  • Received:2010-02-27 Revised:2010-05-31 Online:2011-02-25 Published:2011-02-25

摘要:

Adaboost算法是一种用于目标检测的有效算法,自2001年应用于人脸检测以来,陆续有各种改进算法提出,旨在提高检测精度和适用范围。然而,训练一个Adaboost分类器仍然是一个很耗时间的过程。目前,CUDA与Adaboost结合的研究主要集中于在已有分类器的基础上加速目标检测的过程,构建实时目标检测系统。本文对Adaboost算法进行分析,针对其训练时间长的问题,结合GPU的硬件结构和CUDA的编程特点,从特征值计算和弱分类器训练两方面对其进行并行化,提出了基于CUDA的Adaboost算法的实现方法,优化了数据存储结构、访问方式和程序流程。在样本大小为19×19,样本数量为38 400的样本集上,获得了8.1倍的加速比。与传统方法相比,在提高训练速度的同时,保证了较好的分类效果。

关键词: GPU, Adaboost, CUDA, 人脸检测

Abstract:

The Adaboost algorithm is an efficient method for target detection. Since 2001, a lot of improvement has been proposed in order to improve the detection accuracy and the scope of application. However, the training of an Adaboost classifier is still a timeconsuming process. Currently, research on the combination of CUDA and Adaboost focuses on how to accelerate the process of object detection with existing classifiers. This paper analyzes the Adaboost algorithm,and the experimental results indicate that calculating the values of simple features and training weak classifiers consume most of the time. Then on the basis of the GPU hardware structure and CUDA, this paper presents a parallel implementation of the Adaboost algorithm aiming at accelerating the whole training process, and optimizes the data storage structure and data access efficiency. We test the implementation on a sample set which contains 38,400 samples of size 19×19 .The results show that 8.1 times speedup has been achieved with a good detection performance.

Key words: GPU;Adaboost;CUDA;face detection