• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (2): 112-117.doi: 10.3969/j.issn.1007130X.2011.

• 论文 • 上一篇    下一篇

一种基于快速鲁棒特征的图像匹配算法

王君本,卢选民,贺兆   

  1. (西北工业大学电子信息学院,陕西 西安 710129)
  • 收稿日期:2010-04-28 修回日期:2010-06-28 出版日期:2011-02-25 发布日期:2011-02-25
  • 通讯作者: 王君本 E-mail:why56835@163.com
  • 作者简介:王君本(1985),男,山东夏津人,硕士,研究方向为图形图像处理。卢选民(1972),男,陕西西安人,副教授,研究方向为智能信息处理、多媒体通信与计算机网络等。贺兆(1986),女,陕西咸阳人,硕士生,研究方向为智能信息处理。
  • 基金资助:

    2009年西北工业大学研究生创新基金(Z200937)及敦煌研究院“数字敦煌”项目的支持

An Improved Algorithm of Image Registration Based on Fast Robust Features

WANG Junben,LU Xuanmin,HE Zhao   

  1. (School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China)
  • Received:2010-04-28 Revised:2010-06-28 Online:2011-02-25 Published:2011-02-25

摘要:

针对传统的图像特征匹配算法数据量大、计算耗时长的缺点,本文提出了一种基于快速鲁棒特征(SURF)的图像配准算法。SURF算法作为一种新的特征提取算法,在独特性、鲁棒性等方面均超过了其它方法,并在计算效率上具有明显的优势。该算法在积分图像的基础上进行快速计算,通过快速Hessian检测子来检测特征点。对于每个特征点,通过计算哈尔小波变换来确定特征点的主方向,并确定特征描述子,再根据Hessian矩阵迹的正负性和最近邻与次近邻比值的方法相结合获取匹配点,并用改进的RANSAC算法剔除伪匹配点以确保匹配的有效性。实验表明,该算法既能满足匹配准确性的要求,又具有计算量小、计算速度快的优点。

关键词: 图像匹配, SURF, 积分图像, Hessian矩阵, 尺度空间, 特征点描述子

Abstract:

With the shortcomings of large data amount and long time consuming in the conventional image feature matching algorithms, a new algorithm based on SURF for image registration is presented in this paper. SURF is a new feature extraction algorithm which approximates or even outperforms other schemes with respect to distinctiveness, and robustness. And it is much faster than the other similar ones. It is fast computed based on the integral image and through the FastHessian detector, the feature points are extracted. For each feature point, the dominant orientation is assigned by computing the Haarwavelet responses, and then the descriptor is generated. Image matching is made based on the sign of the trace of the Hessian matrix and the ratios of the closest neighbor and the second closest neighbor, and an improved RANSAC technique is applied to eliminate outliers to ensure the effectiveness of the matched pairs. The experimental result shows that this algorithm can not only meet the requirement of accuracy, but also has a small data amount and fast speed for image registration.

Key words: image registration;speededup robust features;integral image;Hessian matrix, scale space;feature point descriptor