J4 ›› 2011, Vol. 33 ›› Issue (2): 112-117.doi: 10.3969/j.issn.1007130X.2011.
王君本,卢选民,贺兆
WANG Junben,LU Xuanmin,HE Zhao
摘要:
针对传统的图像特征匹配算法数据量大、计算耗时长的缺点,本文提出了一种基于快速鲁棒特征(SURF)的图像配准算法。SURF算法作为一种新的特征提取算法,在独特性、鲁棒性等方面均超过了其它方法,并在计算效率上具有明显的优势。该算法在积分图像的基础上进行快速计算,通过快速Hessian检测子来检测特征点。对于每个特征点,通过计算哈尔小波变换来确定特征点的主方向,并确定特征描述子,再根据Hessian矩阵迹的正负性和最近邻与次近邻比值的方法相结合获取匹配点,并用改进的RANSAC算法剔除伪匹配点以确保匹配的有效性。实验表明,该算法既能满足匹配准确性的要求,又具有计算量小、计算速度快的优点。