• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (5): 132-135.

• 论文 • 上一篇    下一篇

基于WEKA的客户分类信息系统研究

卢媛媛,张剑,何海燕   

  1. (北京理工大学经济与管理学院,北京 100081)
  • 收稿日期:2010-05-20 修回日期:2010-09-02 出版日期:2011-05-25 发布日期:2011-05-25
  • 作者简介:卢媛媛(1982),女,安徽合肥人,博士生,研究方向为企业管理和数据挖掘。张剑(1986),男,山东东营人,博士生,研究方向为企业管理和数据挖掘。何海燕(1963),女,河北石家庄人,博士,教授,研究方向为现代企业管理与方法,反倾销。

Research on WEKABased Customer Classification Information Systems

LU Yuanyuan,ZHANG Jian,HE Haiyan   

  1. (School of Management and Economics,Beijing Institute of Technology,Beijing 100081,China)
  • Received:2010-05-20 Revised:2010-09-02 Online:2011-05-25 Published:2011-05-25

摘要:

本文采用决策树方法,对客户交易数据和客户基本信息进行数据挖掘分析,降低了数据冗余度,提高了数据集准确率。在RFM模型基础上,从客户交易信息中选取了购买频率和平均每次购买金额作为分类评估指标的补充,得到一组客户交易数据训练集。结合J48算法使用WEKA算法对客户交易数据训练集进行训练、测试和验证,构建了客户分类决策模型,从而有利于客户分类原型系统的系统分析和系统设计。

关键词: 客户细分, 数据挖掘, 分类, 决策树, WEKA

Abstract:

Using a decision tree classification method, this paper analyzes the data of the customer transactions and customer classification information. The main purpose is to establish the classification model by the classified customer data. The first of model constructing process is a series of basic information processing of data mining process to the collection of information and transactions, in order to reduce its data redundancy, improve its training efficiency and accuracy. Secondly, based on the RFM classification model, the thesis selects the frequency, the average amount of each purchase as the  classified assessment of the supplementary indicators from customer transactions, and thus obtains a group of data training set on customer transactions. Then the opensource data mining tools, the  WEKA and J48 (C4.5) algorithms,are used  to train the customers transaction data training set. Finally, based on testing, certification and verification,a customer classification model is built. And the model of customer classification for customer classification systems benefits prototype system analysis and system design.

Key words: customer segmentation;data mining;classification;decision tree;WEKA