• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (5): 97-101.

• 论文 • 上一篇    下一篇

一种基于均值的云自适应粒子群算法

刘洪霞,周永权   

  1. (广西民族大学数学与计算机科学学院,广西 南宁 530006)
  • 收稿日期:2010-06-07 修回日期:2010-09-25 出版日期:2011-05-25 发布日期:2011-05-25
  • 作者简介:刘洪霞(1983),女,山东高唐人,硕士生,研究方向为计算智能。
  • 基金资助:

    国家自然科学基金资助项目(60461001);广西自然科学基金资助项目(0542048,0832082)

A Cloud Adaptive Particle Swarm Optimization Algorithm Based on Mean

LIU Hongxia,ZHOU Yongquan   

  1. (School of Mathematics and Computer Science,Guangxi University for Nationalities,Nanning 530006,China)
  • Received:2010-06-07 Revised:2010-09-25 Online:2011-05-25 Published:2011-05-25

摘要:

本文基于云理论把粒子群分为三个种群,用云方法修改粒子群算法中惯性权重,同时修改速度更新公式中 “认知部分”和“社会部分”, 引入“均值”的概念,提出了一种基于均值的云自适应粒子群算法。该方法的最大优点是克服了粒子群算法在迭代后期,当一些粒子的个体极值对应的适应度值与全局极值对应的适应度值相差明显时,不能收敛到最优解的缺点。数值实验结果表明,该算法经过较少的迭代次数,就能找到最优解,且平均运算时间减少,降低了算法的平均时间代价。

关键词: 粒子群优化, 均值, 云理论, 自适应惯性权重调整

Abstract:

Based on the cloud adaptive theory, the particle swarm optimization algorithm is improved and the particle swarm is divided into three populations. It  modifies the inertia weight using a cloud method, and meanwhile modifies the “social” and “cognitive” sections, and introduces the notion of mean, and proposes an improved cloud adaptive theory particle swarm optimization algorithm named MCAPSO. The greatest advantage of the method is that the algorithm in the later iteration, when the different value between an individual optimal to some particle corresponding of the fitness value and a global optimal corresponding to the fitness value is significant, overcomes the shortcoming that the algorithm does not benefit from converges to the optimal solution. Numerical experience shows that, MCAPSO runs  less iteration to find the optimal solution, and the average time is lower. The average time cost is reduced accordingly.

Key words: particle swarm optimization(PSO);mean;cloud theory;adaptive inertia weight adjusting