• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (8): 132-137.

• 论文 • 上一篇    下一篇

基于Hopfield神经网络的交通标志识别

杨守建,陈恳   

  1. (宁波大学信息科学与工程学院,浙江 宁波 315211)
  • 收稿日期:2011-02-20 修回日期:2011-05-26 出版日期:2011-08-25 发布日期:2011-08-25
  • 作者简介:杨守建(1989),男,浙江长兴人,研究方向为电气自动化和人工智能。陈恳(1962),男,重庆人,博士,副教授,研究方向为图像与视频处理、人工智能。
  • 基金资助:

    浙江省宁波市自然科学基金资助项目(2010A610109)

Identification of Traffic Signs Based on  the Hopfield Neural Network

YANG Shoujian,CHEN Ken   

  1. (School of Information Science and Egineering,Ningbo University,Ningbo 315211,China)
  • Received:2011-02-20 Revised:2011-05-26 Online:2011-08-25 Published:2011-08-25

摘要:

Hopfield神经网络是经典的人工神经网络之一,本文利用离散型Hopfield神经网络来对各种道路交通标志进行识别,并讨论在加噪、旋转等条件下对交通标志识别率的影响。同时,对图像的复杂度、识别率、图像识别前后的信噪比进行了讨论与分析。

关键词: Hopfield神经网络, 交通标志, 图像复杂度, 信噪比, 识别率

Abstract:

The Hopfield neural network is one of the commonly applied neural networks in the artificial intelligence fields. In this paper, the pattern recognition of selected traffic signs is presented using the  discrete Hopfield neural network. The correlation is explored between the pattern recognition success rate and the level of noise addition and rotation as corruption mixed with the given patterns. Some new concepts, such as the complexity of traffic signs and recognition rate, are defined and employed in this work. The analytical and test results well indicate the good potentials of the Hopfield neural network in the identification of traffic signs and other similar patterns.

Key words: Hopfield neural network;traffic signs;image complexity;antinoise performance;pattern recognition rate