• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2012, Vol. 34 ›› Issue (6): 101-105.

• 论文 • 上一篇    下一篇

一种基于局部保形映射(LPP)的相关反馈方法

张振华,朱信忠,赵建民,徐慧英   

  1. (浙江师范大学数理与信息工程学院,浙江 金华 321004)
  • 收稿日期:2011-04-02 修回日期:2011-07-03 出版日期:2012-06-25 发布日期:2012-06-25
  • 基金资助:

    浙江省自然科学基金资助项目(Y1101269);科技计划项目(2008C14063);浙江省重中之重学科资助项目

A Relevance Feedback Method Based on Locality Preserving Projections(LPP)

ZHANG Zhenhua,ZHU Xinzhong,ZHAO Jianmin,XU Huiying   

  1. (School of Mathematics,Physics and Information Engineering,
    Zhejiang Normal University,Jinhua 321004,China)
  • Received:2011-04-02 Revised:2011-07-03 Online:2012-06-25 Published:2012-06-25

摘要:

目前图像检索通常采用高效的图像降维算法和适当的相关反馈技术来提高检索的效率。局部保形映射(LPP)算法是保留图像本质特征的一种有效的线性降维算法。本文在LPP算法的基础上引入相关反馈技术,进一步提高了检索准确度。利用LPP算法得到降维子空间,在子空间上得出查询数据的k-近邻构成候选数据集,并与查询数据集构建一个权图G,通过弗洛伊德算法求得图G中任意两个数据点之间的测地线距离并排序进而得出反馈结果。实验表明,该算法提高了检索的准确度,并使检索结果得到一定的优化。

关键词: 图像检索, 降维, 局部保形映射, 相关反馈

Abstract:

Recently, there are two possible ways to achieve efficiency of choosing an effective dimension algorithm and using an appropriate relevance feedback technique in image retrieval. Locality Preserving Projections (LPP)is an effective linear dimensionality reduction algorithm, and it preserves the image structure. In order to improve the efficiency of the retrieval accuracy, the article incorporates the users’ feedbacks. Using the algorithm of LPP, we map the data points to a subspace. In this subspace, a weighted graph G can be constructed by a candidate data set  to consist of k nearest neighbors of the query data points, and query data set. We then compute the geodesic distances between all pairs of vertices of the graph G , and sort them, obtain feedback results. The experimental results show that the algorithm can effectively improve retrieval accuracy, and an optimal retrieval results can be obtained.

Key words: image retrieval;dimension reduction;locality preserving projection;relevance feedback