摘要:
车型识别是智能交通系统研究的关键技术之一,针对车型识别的过程中存在处理的信息量大,提取特征维数高,识别实时性较差等问题,设计了一种融入PCA的LBP特征降维车型识别算法。首先在视频序列中使用帧间差分法提取目标车辆;然后计算目标车辆的LBP特征并利用PCA方法将数据由像素维数降至训练数据维数,在增强识别算法对光线变化鲁棒性的同时,一定程度上降低了车型识别的计算量;最后利用最小距离分类器对目标车辆进行分类识别。实验结果表明,所设计的车型识别算法与常规PCA方法相比,所设计的算法在光照变化时识别准确率有所提高,算法的实时性得到了一定的提升。
董恩增,魏魁祥,于晓,冯倩. 一种融入PCA的LBP特征降维车型识别算法[J]. 计算机工程与科学.
DONG En-zeng,WEI Kui-xiang,YU Xiao,FENG Qian.
A model recognition algorithm integrating
PCA into LBP feature dimension reduction
[J]. Computer Engineering & Science.