• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (7): 87-94.

• 论文 • 上一篇    下一篇

基于多基因族编码的股票网络社团划分研究

李康顺1, 2,陈桂华1   

  1. (1.江西理工大学信息工程学院,江西 赣州 341000;2.华南农业大学信息学院,广东 广州 510642)
  • 收稿日期:2012-06-19 修回日期:2012-09-04 出版日期:2013-07-25 发布日期:2013-07-25
  • 基金资助:

    国家自然科学基金资助项目(70971043);江西省教育厅科学技术研究项目(GJJ12348);广东省科技攻关项目(2012A020602037)

Stock networks community structure division algorithm
based on multigene families encoding         

LI Kangshun1,2,CHEN Guihua1   

  1. (1.School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000;
    2.School of Information,South China Agricultural University,Guangzhou 510642,China)
  • Received:2012-06-19 Revised:2012-09-04 Online:2013-07-25 Published:2013-07-25

摘要:

针对传统股票网络社团划分算法发现精度低、时间复杂度高、容易陷入局部最优解的缺点,提出一种基于多基因族(MGF)编码的基因表达式编程(GEP)股票网络社团划分算法,来研究股票市场复杂网络社团化现象。该算法利用多基因族编码的特性,将代表股票节点的ID号和表示社团的类型分别编码在两个不同的多基因族中,再通过一个映射函数将两者的相互作用关系隐式编码在染色体中;同时,将精英迁移策略应用到基因选择、交叉、倒置、限制交换等各个遗传阶段,以避免早熟现象,加快遗传收敛到全局最优解的速度。实验分析表明,该算法能够准确和高效地实现股票复杂网络社团的划分,其划分结果对投资者进行决策具有重要的指导意义。

关键词: 股票复杂网络, 社团划分, 多基因族, 基因表达式编程, 精英迁移策略

Abstract:

In order to solve the problems of the traditional stock networks community structure division, such as low searching accuracy, high time complexity and ease of going into a local optimal solution, this paper proposes a new community division algorithm based on MultiGene Families (MGF) encoding GEP to research the stock market complex networks community structure division phenomenon. The algorithm takes advantage of the MGF property to respectively encode the stock node ID and the community type into two different MGFs, and then implicitly encodes the relationship of the two MGF into the chromosome through a mapping function. Meanwhile, the elite migration strategy is applied to the whole hereditary stage e.g. gene selection, chromosome crossover, chromosome inversion, restricted permutation and so on, which can prevent premature and speed the convergence. Experimental analysis shows that this algorithm implements the stock complex network division accurately and efficiently, and the community structure division result can provide the stock investors with profound information.

Key words: stock market complex networks;community structure division;multigene families;gene expression programming;elite migration strategy