• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (8): 89-95.

• 论文 • 上一篇    下一篇

复合混沌-人工鱼群混合算法的改进及性能研究

易新兵1,2,杨凯1   

  1. (1.空军工程大学航空航天工程学院,陕西 西安 710038;2.95019部队,湖北 老河口 441800)
  • 收稿日期:2012-06-21 修回日期:2012-10-08 出版日期:2013-08-25 发布日期:2013-08-25

Improvement and performance research of hybrid
algorithm based on compound chaoticartificial fish swarm         

YI Xinbing1,2,YANG Kai1   

  1. (1.Institute of Aeronautics & Astronautics Engineering,Air Force Engineering University,Xi’an 710038;
    2.Troop 95019,Laohekou 441800,China)
  • Received:2012-06-21 Revised:2012-10-08 Online:2013-08-25 Published:2013-08-25

摘要:

针对人工鱼群算法在寻优过程中接近最优点时收敛速度下降而难以得到精确解,优化复杂问题时易陷入局部极值的缺点,提出了一种复合混沌搜索技术与改进人工鱼群算法相结合的混合算法。该算法采用更具遍历性的组合映射产生复合混沌局部搜索方法,来避免人工鱼长时间陷入局部极值区域,从而更加精确地达到全局最优点;同时,对人工鱼引入反馈吞食行为进行改进,改进的人工鱼群算法降低了优化后期的复杂度,并提高了优化精度,保证了收敛效率。实验结果表明,在相同参数条件下,该混合算法的收敛速度、优化精度和全局寻优能力均优于基本人工鱼群算法,实例验证了算法的有效性。

关键词: 人工鱼群算法, 复合映射, 混沌搜索, 全局寻优, 反馈策略, 吞食行为

Abstract:

When artificial fish swarm algorithm is close to the optimal point during its optimization process, the convergence rate declines so that it is difficult to get exact solutions. Besides, the algorithm is easy to fall into local minima in complex issues. Aiming at the aforementioned disadvantages, a hybrid algorithm is proposed, which combines the compound chaotic search technology and the improved artificial fish swarm algorithm. It adopts the mapping combination with more ergodicity to generate the local search method. The method can avoid that artificial fish are into local extremum area for a long time, so that it reaches the global extreme points more precisely. Meanwhile, the artificial fish swarm algorithm is improved by introducing feedbackswallowed behavior of artificial fish. The improved algorithm reduces optimization complexity at late stage, improves accuracy and guarantees convergence efficiency. Experimental results show that, under the same parameter conditions, the proposed hybrid algorithm outperforms the basic artificial fish swarm algorithm in convergence rate, optimization accuracy and global optimization ability. Experiments demonstrate the efficiency of the proposed method.

Key words: artificial fish swarm algorithm;compound map;chaotic search;global optimization;feedback strategy;swallowed behavior