• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于混沌更新策略的蜂群算法在SVM参数优化中的应用

高雷阜,王飞   

  1. (辽宁工程技术大学优化与决策研究所,辽宁 阜新 123000)
  • 收稿日期:2015-07-21 修回日期:2015-11-16 出版日期:2017-01-25 发布日期:2017-01-25
  • 基金资助:

    教育部高校博士学科科研基金联合资助项目(20132121110009);辽宁省教育厅基金(L2015208)

Application of artificial bee colony based on chaos update
strategy in support vector machine parameter optimization
 

GAO Leifu,WANG Fei   

  1. (Institute of Optimization and Decision,Liaoning Technical University,Fuxin 123000,China)
  • Received:2015-07-21 Revised:2015-11-16 Online:2017-01-25 Published:2017-01-25

摘要:

针对支持向量机的参数寻优缺乏数学理论指导,传统人工蜂群算法易陷入长期停滞的不足,而混沌搜索算法具有很好的随机性和遍历性,提出了基于混沌更新策略人工蜂群支持向量机参数选择模型(IABCSVM)。该模型利用混沌搜索对侦察蜂搜索方式进行改进,有效提高蜂群算法搜索效率。以UCI 标准数据库中的数据进行数值实验,采用ACOSVM、PSOSVM、ABCSVM作为对比模型,实验表明了IABC在SVM参数优化中的可行性和有效性,具有较高的预测准确率和较好的算法稳定性。
 

关键词: 支持向量机, 参数寻优, 人工蜂群算法, 混沌搜索, 预测准确率

Abstract:

There is little mathematical theory guidance for the parameter optimization of support vector machines (SVMs), and the traditional artificial bee colony (ABC) is easy to fall into the longterm stagnation. Since the chaotic search algorithm has good randomicity and ergodicity, we propose a parameter optimization model  based on the ABC algorithm with the chaos update strategy (IABCSVM) to solve this problem. This model uses the chaotic search algorithm to improve the searching way of reconnaissance peak, and improve the ABC’s searching efficiency. We evaluate the proposed algorithm on the public data sets from University of California Irvine (UCI), and compare it with the ACOSVM, PSOSVM, and ABCSVM models. Experimental results show that the IABC algorithm is feasible and effective for optimizing SVM parameters, and has higher prediction accuracy and better stability.

Key words: support vector machine, parameter optimization, artificial bee colony algorithm, chaotic search, prediction accuracy