• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (08): 1566-1570.

• 论文 • 上一篇    下一篇

一种新的小波半软阈值图像去噪方法

李秋妮,晁爱农,史德琴,孔星炜   

  1. (空军工程大学航空航天工程学院,陕西 西安 710038)
  • 收稿日期:2012-12-21 修回日期:2013-03-19 出版日期:2014-08-25 发布日期:2014-08-25
  • 基金资助:

    国家自然科学基金资助项目(61175029)

A novel image denoising method of wavelet semisoft threshold           

LI Qiuni,CHAO Ainong,SHI Deqin,KONG Xingwei   

  1. (College of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi’an 710038,China)
  • Received:2012-12-21 Revised:2013-03-19 Online:2014-08-25 Published:2014-08-25

摘要:

在小波半软阈值图像去噪方法基础上,提出了一种基于自适应局部相关系数的新方法。该方法在软阈值法和硬阈值法之间有很好的折衷,通过加入局部相关系数,使其在各种小波变换中均能增强子带内小波系数的相关性。在阈值选取中选用了基于Bayes风险估计的自适应阈值和具有统计意义上的阈值方法,获得了小波系数不同子带不同方向的最优估计。实验结果显示,该方法去噪效果显著,同时能够改善小波变换所造成的图像视觉失真和边缘振荡效应,更好地保留了图像边缘和细节纹理特征。该方法可通过调节局部相关系数控制图像去噪程度和效果,能满足不同需求,具有很高的实用价值。

关键词: 小波变换, 图像去噪, 半软阈值法, Bayes估计

Abstract:

Based on the image denoising method of wavelet semisoft threshold, a novel method based on adaptive local correlation coefficient is proposed. By introducing the local correlation coefficient, the proposed method, which has a good compromise between the soft threshold and hard threshold, can enhance the subband correlation among wavelet coefficients in a variety of wavelet transforms. The adaptive threshold is selected based on Bayes risk estimation and the statistical significance in order to achieve the best estimation of wavelet coefficients in the different directions and subbands. Experimental results show that the new method improves the image denoising effect efficiently, and reduces the image visual distortion and edge oscillation caused by the image wavelet transform so as to retain the image feature of edges and detail at the same time. This method can be controlled by adjusting the partial correlation coefficients with the extent and effect of image denoising, thus meeting the different needs and having high practical value.

Key words: wavelet tansform;image denoising;semi-soft threshold;Bayes estimation