• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于非局部总广义变分的图像去噪

王小玉,郭晓中   

  1. (哈尔滨理工大学计算机科学与技术学院,黑龙江 哈尔滨 150080)
  • 收稿日期:2015-11-16 修回日期:2016-05-12 出版日期:2017-08-25 发布日期:2017-08-25
  • 基金资助:

    黑龙江省教育厅科学技术项目(12541177)

An image denoising method based on
nonlocal total generalized variation

WANG Xiao-yu,GUO Xiao-zhong   

  1. (School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
  • Received:2015-11-16 Revised:2016-05-12 Online:2017-08-25 Published:2017-08-25

摘要:

针对全变分(TV)模型在去除图像噪声时容易产生阶梯效应的缺点,将二阶总广义变分(TGV)作为正则项应用于全变分模型中可以有效地去除阶梯效应,并且还能够更好地保持图像边缘纹理结构;利用非局部均值滤波算法的思想来构造非局部微分算子,将非局部微分算子应用于总广义变分模型中,综合提出了一种基于非局部总广义变分的图像去噪新模型。新模型充分利用了图像的全局信息进行去噪。实验结果显示了该模型的有效性和优越性。
 

关键词: 全变分模型, 总广义变分, 非局部均值滤波, 非局部微分算子, 图像去噪

Abstract:

The total variation model can remove noise effectively, however, it also brings in staircase effect. To overcome this shortcoming, we use the second order total generalized variation (TGV) as the regularization term in the new denoising model. The TGV model can not only eliminate the staircase effect, but also preserve structures such as edges and textures better. The nonlocal differential operators which are constructed based on the idea of the nonlocal means filtering algorithm are applied to the TGV model, and the new method makes good use of the global information of the image to remove noise. Experimental results demonstrate the validity and superiority of the proposed method.

Key words: total variational model, total generalized variation, nonlocal means filtering, nonlocal differential operators;image denoising