• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (09): 1817-1822.

• 论文 • 上一篇    下一篇

一种基于区域中心点的聚类算法

范敏,李泽明,石欣   

  1. (重庆大学自动化学院,重庆 400044)
  • 收稿日期:2013-03-13 修回日期:2013-06-20 出版日期:2014-09-25 发布日期:2014-09-25
  • 基金资助:

    中央高校基本科研业务费科研专项基金资助项目(CDJZR10170009)

A clustering algorithm based on local center object           

FAN Min,LI Zeming,SHI Xin   

  1. (School of Automation,Chongqing University,Chongqing 400044,China)
  • Received:2013-03-13 Revised:2013-06-20 Online:2014-09-25 Published:2014-09-25

摘要:

聚类是数据挖掘领域中一个重要的分析手段。在基于密度的聚类算法DBSCAN的基础上,针对算法对输入参数较为敏感,以及对多密度层次数据集聚类质量不高的问题,提出了一种改进的基于区域中心点的密度聚类算法。该算法将不同密度层次的簇视为不同的区域,并基于区域中心点(区域密度最大的点)开始扩展其规模,直至达到由密度比例因子决定的区域边缘。为提高聚类准确率,在簇的扩展过程中,从候选核心点中发现核心点,加强了核心点的选取条件。实验表明,该算法降低了对输入参数的敏感性,改善了对密度分布不均匀数据集聚类效果,提高了聚类准确率。

关键词: 聚类, DBSCAN, 密度, 区域中心点, k邻域

Abstract:

Clustering is a critical analytical tool in data mining. An improved densitybased clustering algorithm concerning local center object is proposed based on the classical DBSCAN algorithm. In this algorithm, the density of each object is measured by its knearest neighbors. The object which has the local maximal density is regarded as the center object. The data set is divided into different districts. The cluster expands from the center object until the edge decided by the scalefactor of density. To improve the quality of clustering, the candidate core object is proposed in the algorithm. Core objects can be recognized from candidate core objects, so that current clustering is expanded. The experimental results show that the proposed algorithm is considerably effective in reducing the sensitivity of the parameters, improving the clustering results with maldistribution of data sets and enhancing the clustering accuracy.

Key words: clustering;DBSCAN;density;local center object;k-nearest neighbors