计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1449-1456.
李兰,刘杰,张洁
LI Lan,LIU Jie,ZHANG Jie
摘要: 在图像和视频序列中进行行人检测时,存在行人姿态和尺度多样及行人遮挡的问题,导致YOLOv4算法对部分行人检测不准确,存在误检和漏检的情况。针对这一问题,提出了基于YOLOv4改进算法的复杂行人检测模型。首先,使用改进的k-means聚类算法对行人数据集真实框尺寸进行分析,根据聚类结果确定先验框尺寸;其次,利用PANet进行多尺度特征融合,增强对多姿态、多尺度行人目标的敏感度,以提高检测效果;最后,针对行人遮挡问题,使用斥力损失函数使预测框尽可能地靠近正确的目标。实验表明,相比于YOLOv4和其他行人检测模型,新提出的检测模型具有更好的检测效果。