• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1449-1456.

• 图形与图像 • 上一篇    下一篇

基于YOLOv4改进算法的复杂行人检测模型研究

李兰,刘杰,张洁   

  1. (青岛理工大学信息与控制工程学院,山东 青岛 266000)
  • 收稿日期:2020-12-30 修回日期:2021-02-25 接受日期:2022-08-25 出版日期:2022-08-25 发布日期:2022-08-25

A complex pedestrian detection model based on improved YOLOv4 algorithm

LI Lan,LIU Jie,ZHANG Jie   

  1. (School of Information and Control Engineering,Qingdao University of Technology,Qingdao 266000,China)
  • Received:2020-12-30 Revised:2021-02-25 Accepted:2022-08-25 Online:2022-08-25 Published:2022-08-25

摘要: 在图像和视频序列中进行行人检测时,存在行人姿态和尺度多样及行人遮挡的问题,导致YOLOv4算法对部分行人检测不准确,存在误检和漏检的情况。针对这一问题,提出了基于YOLOv4改进算法的复杂行人检测模型。首先,使用改进的k-means聚类算法对行人数据集真实框尺寸进行分析,根据聚类结果确定先验框尺寸;其次,利用PANet进行多尺度特征融合,增强对多姿态、多尺度行人目标的敏感度,以提高检测效果;最后,针对行人遮挡问题,使用斥力损失函数使预测框尽可能地靠近正确的目标。实验表明,相比于YOLOv4和其他行人检测模型,新提出的检测模型具有更好的检测效果。

关键词: 行人检测, YOLOv4算法, k-means聚类算法, 多尺度特征融合, 斥力损失

Abstract: When pedestrian detection is carried out in image and video sequences, there are some problems, such as diverse pedestrian posture and scale as well as pedestrian occlusion, which leads to inaccurate detection of some pedestrians by YOLOv4 algorithm and false detection and missed detection. In order to solve this problem, a complex pedestrian detection model based on improved YOLOv4 algorithm is proposed. Firstly, the ground truth size of pedestrian dataset is analyzed by the improved k-means clustering algorithm, and the size of anchor box is determined according to the clustering results. Secondly, PANet is used for multi-scale feature fusion to make it more sensitive to multi-attitude and multi-scale pedestrian targets and improve the detection effect. Finally, for pedestrian occlusion problem, the repulsion loss function is proposed to make the predicted box as close to the correct target as possible. The experimental results show that the new de-tection model has better detection effect than YOLOv4 and other pedestrian detection model.

Key words: pedestrian detection, YOLOv4 algorithm, k-means clustering algorithm, multi-scale feature fusion, repulsion loss