• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (10): 1966-1971.

• 论文 • 上一篇    下一篇

深度广度联合解码的基因表达式程序设计

张建明,唐勇,周书仁,吴宏林   

  1. (长沙理工大学计算机与通信工程学院,湖南 长沙 410114)
  • 收稿日期:2014-06-15 修回日期:2014-08-20 出版日期:2014-10-25 发布日期:2014-10-25
  • 基金资助:

    国家自然科学基金资助项目(61202439);湖南省教育厅优秀青年资助项目(12B003);湖南省交通厅科技计划资助项目(201334)

Gene expression programming combining
depth-first and breadth-first decoding principles       

ZHANG Jianming,TANG Yong,ZHOU Shuren,WU Honglin   

  1. (School of Computer and Communication Engineering,Changsha University of Science and Technology,Changsha 410114)
  • Received:2014-06-15 Revised:2014-08-20 Online:2014-10-25 Published:2014-10-25

摘要:

基因表达式程序设计(GEP)在时间序列分析、分类、自动程序设计、多目标优化、海量数据分析等领域中有着广泛的应用。在GEP解码过程中,将深度优先和广度优先技术的优点相结合,提出了基于深度广度联合解码的GEP算法,从而既能适量地增加种群中个体的多样性,又能适当地保留较优的子树信息(sub_ET)。实验表明,相比标准GEP算法,新算法在进化时间增加不多的情况下提高了平均适应度,获得了更高的成功率。

关键词: 深度, 广度, 解码, 基因表达式程序设计, 符号回归

Abstract:

Gene Expression Programming (GEP) is an automatic programming approach widely used in many areas,such as time series analysis,classification,multiobjective optimization and massive data analysis.A new GEP algorithm is proposed by combining the advantages of the depthfirst and breadth-first technologies in the GEP decoding process.The new algorithm can increase the diversity of individuals and properly preserve better sub_ETs.The experimental results show that,compared with the standard GEP algorithm,the new algorithm can improve the mean fitness without increasing too much evolutionary time,thus achieving a higher success rate.

Key words: depth;breadth;decoding;GEP;symbolic regression