• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (01): 119-129.

• 图形与图像 • 上一篇    下一篇

基于残差注意力编-解码网络的道路提取方法

齐然然1,2,帕力旦·吐尔逊2,3,汤泊川1,2,钱育蓉1,2,4   

  1. (1.新疆大学软件学院,新疆 乌鲁木齐 830091;2.新疆大学软件工程重点实验室,新疆 乌鲁木齐 830091;
    3.新疆师范大学,新疆 乌鲁木齐 830054;4.新疆大学计算机科学与技术学院,新疆 乌鲁木齐 830046)

  • 收稿日期:2023-05-15 修回日期:2023-12-15 接受日期:2025-01-25 出版日期:2025-01-25 发布日期:2025-01-18
  • 基金资助:
    国家自然科学基金(61966035,U1803261);新疆维吾尔自治区科技厅国际合作项目(2020E01023);新疆维吾尔自治区自然科学基金(2022D01A99)

A road extraction method based on residual attention encoder-decoder network

QI Ranran1,2,PALIDAN Tuerxun2,3,TANG Bochuan1,2,QIAN Yurong1,2,4   

  1. (1.School of Software,Xinjiang University,Urumqi 830091;
    2.Key Laboratory of Software Engineering,Xinjiang University,Urumqi 830091;
    3.Xinjiang Normal University,Urumqi 830054;
    4.School of Computer Science and Technology,Xinjiang University,Urumqi 830046,China)
  • Received:2023-05-15 Revised:2023-12-15 Accepted:2025-01-25 Online:2025-01-25 Published:2025-01-18

摘要: 针对遥感图像中相似形状地物对道路提取造成干扰的问题,提出基于残差注意力的编-解码网络RAED-Net。RAED-Net的编码网络采用改进的通道注意力残差模块来提取输入图像的局部特征和全局特征,自适应地调整通道特征映射的权重,提高对重要通道信息的关注,减少背景干扰。在解码网络中引入条形卷积模块,提高上采样过程中跨通道信息交互以及对道路边缘细节信息的恢复能力,提升复杂环境中道路提取结果的准确度。在2个不同类型公开数据集上的对比实验结果表明,RAED-Net能够准确提取道路信息,缓解了相似地物对道路提取带来的干扰问题,取得综合最优结果且参数量最少。尤其在全像素标注、复杂性较高的mini DGRD数据集上的F1、IoU和mIoU分别比次优网络提高了3.53%,5.76%和2.21%。

关键词: 遥感图像, 道路提取, 编-解码网络, 通道注意力

Abstract: Addressing the interference caused by similar-shaped objects in remote sensing images during road extraction, a residual attention encoder-decoder network (RAED-Net) is proposed. The encoder network of RAED-Net employs an improved channel attention residual module to extract local and global features from the input image. This module adaptively adjusts the weights of channel feature maps, enhancing the focus on important channel information and reducing background interference. In the decoder network, a strip convolution module is introduced to improve cross-channel information interaction during the upsampling process and enhance the ability to recover detailed road edge information, thereby improving the accuracy of road extraction results in complex environments. Comparative experimental results on two different types of public datasets demonstrate that RAED-Net can accurately extract road information, mitigate the interference caused by similar-shaped objects during road extraction, and achieve the best overall results with the smallest number of parameters. Especially on the mini DGRD dataset, which is fully annotated and highly complex, RAED-Net achieves improvements of 3.53%, 5.76%, and 2.21% in F1-score, IoU, and mIoU, respectively, compared to the second-best network.

Key words: remote sensing image, road extraction, encoder-decoder network, channel attention