• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (12): 2378-2385.

• 论文 • 上一篇    下一篇

基于CUDA的动态视觉测量像面特征点中心快速定位算法

许晓臣1,董明利1,王君1,孙鹏1,2,燕必希1   

  1. (1.北京信息科技大学光电测试技术北京市重点实验室,北京 100192;
    2.北京邮电大学信息光子学与光通讯研究院,北京 100876)
  • 收稿日期:2014-05-04 修回日期:2014-06-27 出版日期:2014-12-25 发布日期:2014-12-25
  • 基金资助:

    国家自然科学基金资助项目(51175047);北京市属高等学校创新团队建设计划(IDHT20130518);精密测试技术及仪器国家重点实验室开放基金资助项目;北京市优秀人才培养资助项目(2012D005007000007)

A fast target center location algorithm for
dynamic vision measurement based on CUDA             

XU Xiaochen1,DONG Mingli1,WANG Jun1,SUN Peng1,2,YAN Bixi1   

  1. (1.Beijing Key Laboratory of Optoelectronic Test Technology,
    Beijing Information Science & Technology University,Beijing 100192;
    2.Institute of Information Photonics and Optical Communications,
    Beijing University of Posts and Telecommunications,Beijing 100876,China)
  • Received:2014-05-04 Revised:2014-06-27 Online:2014-12-25 Published:2014-12-25

摘要:

数字相机分辨率的提升对视觉测量中精度的提高有很大的促进作用,但是高分辨率图像同时也会带来更大的数据量和计算量的问题。在CPU上应用传统的串行特征点中心定位算法耗时较大,无法满足动态测量的要求。针对此提出了CUDA架构下的并行像面特征点中心快速定位算法。经过分析发现,当大于10 000个点时串行特征点中心定位算法在图像预处理、区域约束判断和点中心计算消耗的时间在90%以上,因此主要对这三个最耗时的部分展开重点研究,分析每部分的并行性,然后实现基于CUDA的特征点中心定位并行算法。实验结果表明,在点中心定位精度没有损失的前提下,提取35 000个点坐标时在CUDA上比传统的串行实现的处理速度提高了11.5倍,并且随着特征点数量的增加加速比还有显著的提高。

关键词: 特征点中心定位, 高分辨率, CUDA, 动态视觉测量

Abstract:

CCD resolution plays a great role in vision measurement precision, but the high resolution will greatly increase the amount of data and computation. Because of that, the traditional serial target center location algorithm running on the CPU cannot meet the requirement of dynamic measurement. In view of this, a fast target center location algorithm for dynamic vision measurement based on CUDA is proposed. When the number of targets is beyond 10 000, more than 90% of time is consumed on image preprocessing, region constraint and target center calculation in the serial target center location algorithm. The three most timeconsuming parts are focused on and each part is analyzed and implemented based on CUDA. The experimental results show that, compared with the serial algorithm running on the CPU, the processing speed of 35 000 target centers based on CUDA is improved by 11.5 times with the same location precision, and the acceleration ratio is improved significantly along with the increase of targets number.

Key words: target center location;high resolution;CUDA;dynamic vision measurement