• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (03): 446-451.

• 论文 • 上一篇    下一篇

基于沃尔泰拉级数的模拟电路组合故障诊断法

王旭婧,陈长兴,任晓岳   

  1. (空军工程大学理学院,陕西 西安 710051)
  • 收稿日期:2014-01-10 修回日期:2014-03-03 出版日期:2015-03-25 发布日期:2015-03-25
  • 基金资助:

    陕西省电子信息系统综合集成重点实验室资助项目(201107Y16);陕西省自然科学基础研究计划资助项目(2014JM8344)

Combinational method for fault diagnosis
in analog circuits based on Volterra series  

WANG Xujing,CHEN Changxing,REN Xiaoyue   

  1. (School of Science,Air Force Engineering University,Xi’an 710051,China)
  • Received:2014-01-10 Revised:2014-03-03 Online:2015-03-25 Published:2015-03-25

摘要:

针对模拟电路的固有复杂性及其传统故障检测方法延时大和正确识别率低的问题,借鉴基于隐马尔科夫模型改进最小二乘支持向量机以及Volterra级数原理,将二者组合进行故障诊断。该方法首先采用Volterra级数频域核对电路故障特征进行提取,再利用经隐马尔科夫模型改进的最小二乘支持向量机进行模态分类,最终完成故障诊断。仿真结果表明,与目前使用的BP神经网络诊断方法和LSSVM诊断方法相比,该方法不仅提高了系统故障辨识能力,还提高了系统故障诊断的速度。

关键词: 故障诊断, 最小二乘支持向量机, 沃尔泰拉级数, 隐马尔科夫模型, 模拟电路

Abstract:

In order to solve the problems of inherent complexity of analog circuits,long detecting time and low correct recognition rate in traditional fault diagnosis methods, we propose a combinational method for fault diagnosis in analog circuits, which combines improved Least Squares Support Vector Machine (LSSVM) by Hidden Markov Model(HMM)with Volterra series.Firstly,we use frequencydomain core of Volterra series to extract circuit fault features.Then we adopt improved LSSVM by HMM for modal classification,and the fault diagnosis is completed.Simulation results show that compared with traditional BP neural network and LSSVM method,the proposed method is more efficient in system fault identification and faster in fault diagnosis.

Key words: fault diagnosis;LS-SVM;Volterra series;HMM;analog circuit