• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (05): 986-992.

• 论文 • 上一篇    下一篇

复杂环境下的遗留物检测算法

叶立仁,何盛鸿,赵连超   

  1. (华南理工大学自动化科学与工程学院,广东 广州 510640)
  • 收稿日期:2014-05-06 修回日期:2014-08-14 出版日期:2015-05-25 发布日期:2015-05-25
  • 基金资助:

    广州市科技计划资助项目(2011Y500009)

An abandoned object detection algorithm
in complex environments

YE Liren,HE Shenghong,ZHAO Lianchao   

  1. (School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,China)
  • Received:2014-05-06 Revised:2014-08-14 Online:2015-05-25 Published:2015-05-25

摘要:

针对在复杂环境下检测遗留物体的问题,提出一种有效的算法。首先,采用局部更新的混合高斯模型与改进的三帧差分法分别得到前景,通过比较得到目标候选区域,并进一步采用阴影消除与连通域分析分割得到暂时静止物团块。其次对达到静止时间阈值的团块采用方向梯度直方图(HOG)行人检测,在排除驻留行人的可能后将其标记为遗留物。最后对检测出的遗留物进行加速分割检测特征(FAST)局部特征匹配,以克服行人遮挡、光线变化对结果的影响。实验结果表明,本算法具有较高的准确性和处理速度,能较好地克服复杂环境中存在的干扰影响。

关键词: 遗留物检测;混合高斯模型;阴影消除;行人检测;局部特征匹配

Abstract:

To solve the problem of detecting abandoned objects in complex environments, we propose an efficient method. Firstly, the candidate areas of the objects are obtained by comparing the foregrounds derived from a Gaussian mixture model based on partial updating and from an improved threeframedifference method.And the blobs of temporarily static objects are segmented by applying shadow elimination and the connected component analysis. Then the blob whose static duration reaches the threshold is labeled as the abandoned object after ruling out the possibility of a static human by applying Histograms of Oriented Gradients (HOG) pedestrian detection. Finally,to overcome pedestrian occlusion and illumination changes, the Features from Accelerated Segment Test (FAST) local feature matching is applied to the detected abandoned objects. Experimental results show that the proposed method has high accuracy and fast processing speed , and a good antiinterference performance is achieved in complex environments.

Key words: abandoned object detection;Gaussian mixture model;shadow elimination;pedestrian detection;local feature matching