• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (07): 1311-1317.

• 论文 • 上一篇    下一篇

精英改进粒子群算法在入库堆垛问题中的应用

张琦琪1,2 ,张涛1,3,刘鹏1   

  1.  (1.上海财经大学信息管理与工程学院,上海 200433;2.上海科学技术职业学院,上海 201800;
    3.上海市金融信息技术研究重点实验室(上海财经大学),上海 200433)
  • 收稿日期:2014-12-01 修回日期:2015-01-16 出版日期:2015-07-25 发布日期:2015-07-25
  • 基金资助:

    国家自然科学基金资助项目(71171126);教育部高等学校博士学科点专项科研基金资助项目(20130078110001);教育部留学回国人员科研启动基金资助项目;上海市哲学社会科学规划项目(2011BGL015);上海市金融信息技术研究重点实验室开放课题资助项目

Elitist learning strategy: an improved particle swarm
optimizer algorithm for stack selection optimization 

ZHANG Qiqi1,2,ZHANG Tao1,3,LIU Peng1   

  1. (1.School of Information Management and Engineering,Shanghai University of Finance and Economics,Shanghai 200433;
    2.Shanghai Vocational College of Science and Technology,Shanghai 201800;
    3.Shanghai Key Laboratory of Financial Information Technology,
    Shanghai University of Finance and Economics,Shanghai 200433,China)
  • Received:2014-12-01 Revised:2015-01-16 Online:2015-07-25 Published:2015-07-25

摘要:

针对钢铁企业生产与物流一体化协同管理中入库堆垛问题,基于出库次序A型约束、垛位选择分散性约束等,建立了以均衡库存垛位负载和最大化板坯综合匹配度为目标的联合优化模型。结合问题的特点,基于PSO算法,利用收敛指数判断种群进化状态,并对处于“收敛”状态的种群执行精英学习策略,提高粒子的活性,帮助种群跃出局部最优。最后通过实例仿真说明了模型与算法的有效性和可行性。

关键词: 入库堆垛问题, 粒子群优化, 精英学习策略, 分散性约束, 收敛指数

Abstract:

To solve the stack selection problem in the integrated management of inventory and production for the iron steel enterprises,we construct a joint optimization model to balance the load of each stack and to maximize the slab comprehensive matching degree at the same time based on the Ashaped constraints,dispersive constraints et al.To help the solution jump out of the local optimum during the evolution when using the particle swarm optimization (PSO) algorithm, we introduce an elitist learning strategy,which can improve the solutions when the group converges.Finally,simulation results demonstrate the validity and feasibility of the proposed algorithm.

Key words: stack selection problem;particle swarm optimization;elitist learning strategy;dispersive constraints;exponent of convergence