• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (10): 1917-1923.

• 论文 • 上一篇    下一篇

噪声先验自适应加权的稀疏表示混合去噪算法

张建明,李沛,吴宏林,黄倩倩   

  1. (1.长沙理工大学综合交通运输大数据智能处理湖南省重点实验室,湖南 长沙 410114;2.长沙理工大学计算机与通信工程学院,湖南 长沙 410114)
  • 收稿日期:2015-07-25 修回日期:2015-09-27 出版日期:2015-10-25 发布日期:2015-10-25
  • 基金资助:

    国家自然科学基金资助项目(61402053);湖南省教育厅优秀青年基金资助项目(12B003);湖南省交通厅科技资助项目(201334);2015年湖南省研究生科研创新资助项目(CX2015B369)

A mixed denoising algorithm based on sparse
representation and noise distribution prior knowledge 

ZHANG Jianming,LI Pei,WU Honglin,HUANG Qianqian   

  1. (1.Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation,
    Changsha University of Science and Technology,Changsha 410114;
    2.School of Computer and Communication Engineering,
    Changsha University of Science and Technology,Changsha 410114,China)
  • Received:2015-07-25 Revised:2015-09-27 Online:2015-10-25 Published:2015-10-25

摘要:

提出了一种结合噪声分布先验知识的稀疏表示混合去噪算法。该算法通过自适应中值滤波器进行初始化来分析噪声分布先验,对稀疏编码中的原子进行自适应加权。然后以当前原子集的极值为基准调整选取阈值,对稀疏编码中的原子进行选择淘汰。本算法避免了传统混合去噪算法的两相检测策略,时间复杂度显著降低。实验表明本算法在峰值信噪比PSNR和去噪效率上都有明显优势。

关键词: 混合去噪, 稀疏表示, 自适应中值滤波, 原子加权

Abstract:

We propose a mixed denoising algorithm based on sparse representation and prior knowledge of noise distribution. The proposed algorithm utilizes the Adaptive Median Filter (AMF) to initialize and analyze the prior knowledge of noise distribution, and adaptively weight the sparse representation atom vector at the stage of sparse coding. Then, the selection threshold is adaptively adjusted by the extreme value of the current set of atoms so as to do selective elimination on atoms. Because of a avoidance of the traditional twophase mixed denoising strategy, the proposed algorithm gains much better PSNR and faster speed.

Key words: mixed denoise;sparse representation;adaptive median filter;weighted atoms