• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于低秩子空间投影和Gabor特征的稀疏表示人脸识别算法

杨方方1,吴锡生1,顾标准2   

  1. (1.江南大学物联网工程学院,江苏 无锡 214122;2.浙江大学计算机科学与技术学院,浙江 杭州 310027)
  • 收稿日期:2015-10-08 修回日期:2015-11-26 出版日期:2017-01-25 发布日期:2017-01-25
  • 基金资助:

    国家自然科学基金(61373055);国家科技支撑计划(2012BAH70F02);江苏省产学研联合创新资金(BY201301535)

A face recognition algorithm based on lowrank subspace
projection and Gabor feature via sparse representation

YANG Fangfang1,WU Xisheng1,GU Biaozhun2   

  1. (1.School of Internet of Things Engineering,Jiangnan University,Wuxi 214122;
    2.School of Computer Science and Technology,Zhejiang University,Hangzhou 310027,China)
     
  • Received:2015-10-08 Revised:2015-11-26 Online:2017-01-25 Published:2017-01-25

摘要:

目前的人脸识别算法常常忽视训练过程中噪声的影响,特别是在训练数据和待测数据都受到噪声污染的情况下,识别性能会明显下降。针对含有光照变化、伪装、遮挡及表情变化等较大噪声的人脸识别问题,提出了一种基于低秩子空间投影和Gabor特征的稀疏表示人脸识别算法。该算法首先通过低秩矩阵恢复算法得到训练样本的潜在低秩结构和稀疏误差结构;然后利用主成分分析法找到低秩结构的Gabor特征所在低秩子空间的变换矩阵;再通过变换矩阵将所有样本的Gabor特征向量投影到低秩子空间上,在该低秩子空间上使用稀疏表示分类算法进行最终的分类识别。在Extend Yale B和AR数据库上的实验表明,新算法具有较高的识别率和较强的抗干扰能力。

关键词: 人脸识别, 稀疏表示, 低秩矩阵恢复, Gabor特征提取, 低秩子空间投影

Abstract:

At present, face recognition algorithms often ignore the influence of noise in the training process, especially when the training data and the testing data are corrupted, so the recognition performance may be decreased significantly. To solve the problem of face recognition with illumination variation, occlusion, camouflage and expression variation, we propose a new face recognition algorithm based on lowrank subspace projection and Gabor feature via sparse representation. Firstly, we obtain the potential low rank structure and sparse error structure of training samples by the lowrank matrix recovery algorithm, and the transformation matrix of the Gabor feature of the low rank structure by using the principal component analysis.  Then the Gabor feature vectors of training samples and testing samples are projected to the low rank subspace through the transformation matrix. Finally, we use sparse representation classification algorithm to perform classification and recognition in the low rank subspace. Experiments on the Extend Yale B and AR databases show that the proposed method has a high recognition rate and strong robustness.

Key words: face recognition, sparse representation, lowrank matrix recovery, Gabor feature extraction, lowrank subspace projection