• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (03): 562-568.

• 论文 • 上一篇    下一篇

基于数学形态学的模糊集理论在车牌字符识别中的运用

阮志毅,沈有建,刘凤玲   

  1. (海南师范大学数学与统计学院,海南 海口 571158)
  • 收稿日期:2014-12-16 修回日期:2015-05-20 出版日期:2016-03-25 发布日期:2016-03-25
  • 基金资助:

    国家自然科学基金(11461018,41361108);海南省研究生创新科研课题(Hys201455)

An application of mathematical morphology based fuzzy
set theory in license plate characters recognition       

RUAN Zhiyi,SHEN Youjian,LIU Fengling   

  1. (School of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China)
  • Received:2014-12-16 Revised:2015-05-20 Online:2016-03-25 Published:2016-03-25

摘要:

为了更加高效地利用模板匹配的方法实现对车牌字符图像的识别,结合数学形态学和模糊集理论,提出基于数学形态学的模糊模板匹配方法。首先,对于二值图像的每个像素点及其8邻域,以赋权的方式刻画中心像素点隶属于字符的程度;其次,加4×4窗口选取代表点,并有重叠地遍历整个字符图像,以构造字符图像的模糊隶属度矩阵;进而运用海明贴近度计算待识别字符的归类,实现对字符的识别;最后,使用Matlab对模糊模板匹配方法进行编程,并在实际字符图像中测试识别效果。与传统模板匹配方法相比较,测试的结果表明,车牌字符的识别准确率得到了显著的提高。关键词:

关键词: 数学形态学, 模糊集, 模板匹配, 车牌字符, Matlab

Abstract:

In order to utilize the template matching method more efficiently to implement the recognition of license plate characters, we propose a fuzzy template matching method based on mathematical morphology which  combines the mathematical morphology and the fuzzy set theory. Firstly, for each binary image pixel point and its 8neighborhood, the degree that the center pixel point belongs to the current character can be described by weighting. Secondly, we use a 4×4window to select a representative point and traverse it through the entire character with partially overlapping, and the fuzzy membership matrix of each character image is constructed. Then the Hamming approach degree calculation is utilized to classify the characters to be recognized and the recognition is achieved. Finally, we program the fuzzy template matching method on the Matlab and test the recognition results of actual license plate characters. Compared with the traditional template matching method, the test results show that our proposal can improve the recognition accuracy of license plate characters significantly.

Key words: mathematical morphology;fuzzy set;template matching;license plate characters;Matlab