• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (04): 624-633.

• 论文 • 上一篇    下一篇

大数据环境下MES作业计划与调度能力云服务化研究

徐迭石,刘胜辉,马超,张淑丽,张宏国   

  1. (哈尔滨理工大学软件学院,黑龙江 哈尔滨 150080)
  • 收稿日期:2015-03-02 修回日期:2015-11-07 出版日期:2016-04-25 发布日期:2016-04-25
  • 基金资助:

    国家自然科学基金(51375128);黑龙江省教育厅科学技术研究项目(12541159)

A cloud servitization method for job shop scheduling
capability of MES in big data environment         

XU Dieshi,LIU Shenghui,MA Chao,ZHANG Shuli,ZHANG Hongguo   

  1. (School of Software,Harbin University of Science and Technology,Harbin 150080,China)
  • Received:2015-03-02 Revised:2015-11-07 Online:2016-04-25 Published:2016-04-25

摘要:

云制造技术给制造企业带来机遇的同时,也为其制造执行系统MES的设计与实现带来了新的挑战。为了解决单件小批MES中作业计划与调度优化问题,首先设计了一个从作业计划静态制定,到作业执行情况实时监控与主动感知,再到异常事件智能响应,最后到作业调度动态调节的闭环体系结构。接着针对异常信息实时获取与异常事件发现、异常事件智能化处理以及作业计划与调度优化算法计算能力服务化三个子问题,依次进行了问题分析并给出了技术解决方案。最后,以哈尔滨电机厂为案例对象,综合利用IEC/ISO 62264标准、大数据分析与挖掘方法以及由虚拟化、服务化和SOA等组成的云计算技术实现了单件小批MES作业计划与调度综合优化系统,验证了上述理论与方法的有效性。

关键词: 云制造, 作业计划与调度, 大数据, 虚拟化

Abstract:

Cloud manufacturing brings new opportunities for manufacturing enterprises, but in the meantime it also brings new challenges to the design and implementation of manufacturing execution system (MES). To solve the issues of "job shop scheduling" in single and small batch MES, firstly we design a closedloop architecture that is from static scheduling to realtime monitoring and active perception of manufacturing execution, then to intelligent response of abnormal events, and finally, to dynamic scheduling. Then for solving three sub issues, i.e. realtime acquisition of exception information and discovery of abnormal events, intelligent processing of abnormal events and servitization of job shop scheduling optimization algorithms, we analyze them and provide technical solutions. Finally, taking Harbin Electrical Machinery Plant as a case, and combining IEC/ISO 62264 standard, big data analysis and mining method, and the cloud computing method consisting of virtualization, servitization and SOA together,  we develop an integrated job shop scheduling optimization system of single and small batch MES, and the aforementioned theory and method are validated.

Key words: cloud manufacturing;job shop scheduling;big data;virtualization