J4 ›› 2016, Vol. 38 ›› Issue (04): 699-705.
张辉1,2,师统1,王耀南2
ZHANG Hui1,2,SHI Tong1,WANG Yaonan2
摘要:
针对极端学习机(ELM)网络规模控制问题,从剪枝思路出发,提出了一种基于影响度剪枝的ELM分类算法。利用ELM网络单个隐节点连接输入层和输出层的权值向量、该隐节点的输出、初始隐节点个数以及训练样本个数,定义单个隐节点相对于整个网络学习的影响度,根据影响度判断隐节点的重要性并将其排序,采用与ELM网络规模相匹配的剪枝步长删除冗余节点,最后更新隐含层与输入层和输出层连接的权值向量。通过对多个UCI机器学习数据集进行分类实验,并将提出的算法与EMELM、PELM和ELM算法相比较,结果表明,该算法具有较高的稳定性和测试精度,训练速度较快,并能有效地控制网络规模。