• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (04): 699-705.

• 论文 • 上一篇    下一篇

基于影响度剪枝的极端学习机分类算法研究

张辉1,2,师统1,王耀南2   

  1. (1.长沙理工大学电气与信息工程学院,湖南 长沙 410012;
    2.湖南大学电气与信息工程学院,湖南 长沙 410082)
  • 收稿日期:2015-08-25 修回日期:2015-10-20 出版日期:2016-04-25 发布日期:2016-04-25
  • 基金资助:

    国家自然科学基金(61401046);国家科技支撑计划(2015BAF11B01);湖南省自然科学基金(13JJ4058);湖南省教育厅科学研究青年项目(13B135);图像测量与视觉导航湖南省重点实验室开放课题(TXCLKF2013001);长沙市科技计划项目(K140401911)

A classification algorithm of extreme learning
machine based on influence degree pruning   

ZHANG Hui1,2,SHI Tong1,WANG Yaonan2   

  1. (1.College of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410012;
    2.College of Electrical and Information Engineering,Hunan University,Changsha 410082,China)
  • Received:2015-08-25 Revised:2015-10-20 Online:2016-04-25 Published:2016-04-25

摘要:

针对极端学习机(ELM)网络规模控制问题,从剪枝思路出发,提出了一种基于影响度剪枝的ELM分类算法。利用ELM网络单个隐节点连接输入层和输出层的权值向量、该隐节点的输出、初始隐节点个数以及训练样本个数,定义单个隐节点相对于整个网络学习的影响度,根据影响度判断隐节点的重要性并将其排序,采用与ELM网络规模相匹配的剪枝步长删除冗余节点,最后更新隐含层与输入层和输出层连接的权值向量。通过对多个UCI机器学习数据集进行分类实验,并将提出的算法与EMELM、PELM和ELM算法相比较,结果表明,该算法具有较高的稳定性和测试精度,训练速度较快,并能有效地控制网络规模。

关键词: 极端学习机, 影响度分析, 剪枝算法, 网络规模, 分类算法

Abstract:

To slove the network size control problems of the extremely learning machine (ELM), we propose an ELM classification algorithm based on the  influence degree pruning. The algorithm uses the individual ELM hidden node which connects the input and output layer weight vector, the output of the node, the number of samples and the initial number of hidden nodes to define the influence degree of the hidden node on the entire network. Then the importance of the hidden node is determined by the sorted influence degree, and the pruning step length which matches the ELM network scale is used to delete redundant nodes. Finally the weight vectors are updated. We categorize several practical problems on UCI data sets through experiments, and compare the proposed algorithm with the EMELM, PELM and ELM. Experimental results show that the proposed algorithm has higher stability and precision and faster training speed, and it can control the network size effectively. 

Key words: ELM;analysis of influence degree;pruning algorithm;network size;classification algorithm