• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (06): 1244-1251.

• 论文 • 上一篇    下一篇

基于双参照点灰色关联度的模糊支持向量机改进方法

衣柏衡1,朱建军1,张世涛1,2   

  1. (1.南京航空航天大学经济与管理学院,江苏 南京 211106;2.安徽工业大学数理科学与工程学院,安徽 马鞍山 243002)
  • 收稿日期:2015-04-16 修回日期:2015-08-19 出版日期:2016-06-25 发布日期:2016-06-25
  • 基金资助:

    国家社会科学基金重点项目(14AZD049);国家自然科学基金(71171112,71401064);中央高校基本科研业务费专项资金资助(NS2014086);广义虚拟经济研究专项(GX20131017 (M))
    通信地址:211106 江苏省南京市南京航空航天大学经济与管理学院

Improved fuzzy support vector machine based on
grey incidence degree with dual reference points 

YI Baiheng1,ZHU Jianjun1,ZHANG Shitao1,2   

  1. (1.School of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106;
    2.School of Mathematics & Physics Science and Engineering,Anhui University of Technology,Ma’anshan 243002,China)
  • Received:2015-04-16 Revised:2015-08-19 Online:2016-06-25 Published:2016-06-25

摘要:

改进了模糊支持向量机隶属度函数设计方法。考虑样本分布不确定的问题,使用灰色关联度代替现有方法中的欧氏距离,定义了样本的平均灰色绝对关联度;针对噪声识别过程中支持向量对分类贡献被削弱的问题,提出了基于同类中心和异类中心双参照点的噪声判别方法;分析了模糊支持向量机求解对偶问题中参数与支持向量的对应关系,进而给出新的隶属度函数设置步骤。实验结果说明了方法的有效性及实用性。关键词:模糊支持向量机;灰色关联度;隶属度;双参照点

Abstract:

We improve the membership setting method for the fuzzy support vector machine (FSVM). Given the distribution uncertainty of training sets, we replace the classical Euclidean distance with grey incidence degree, and define the mean grey absolute incidence degree of samples. To overcome the disadvantages in traditional methods and ensure a greater contribution of support vectors to the classification results, we present a new approach for distinguishing noises based on the dual reference points of the same center and the different center. The relationship between the parameters in solving the FSVM and the corresponding support vectors is analyzed, and the steps of setting  the fuzzy membership are given. Experimental results demonstrate the effectiveness and practicability of this approach.

Key words: fuzzy support vector machine;grey incidence degree;membership;dual reference points