• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

云计算弹性评测模型的研究与实现

戴荣倩1,左德承1,张展1,李士雷2   

  1. (1.哈尔滨工业大学计算机科学与技术学院,黑龙江 哈尔滨150001;2.中国人民银行,黑龙江 哈尔滨150036)
  • 收稿日期:2016-04-07 修回日期:2016-06-19 出版日期:2016-08-25 发布日期:2016-08-25
  • 基金资助:

    国家863计划(2013AA01A215);国家自然科学基金(61370085)

Study and implementation of an elasticity   evaluation model in cloud computing   

DAI Rong-qian1,ZUO De-cheng1,ZHANG Zhan1,LI Shi-lei2   

  1. (1.School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001;
    2.The People’s Bank of China,Harbin 150036,China)
  • Received:2016-04-07 Revised:2016-06-19 Online:2016-08-25 Published:2016-08-25

摘要:

当前,越来越多的企业开始将自己的核心业务与数据迁移到云上,其中很多业务需要相应的弹性服务来应对负载的实时变化,因此对弹性的评测正变得越来越重要,然而当前缺少一种较为全面的弹性评测方法。为解决以上问题,从资源分配、QoS、资源配置时间等多个角度,对云计算的弹性进行较为全面的分析,提出适用于供应商和用户两个角度的评测方法。在已有基础上,提出资源分配、资源配置时间两个方面的计算模型,并对现存的罚金模型进行改进。最后,在CloudStack云平台上,使用auto-scaling和scale-out两种弹性扩展策略,以TPC-W为负载验证了所提方法的有效性。

关键词: 弹性服务, 评测方法, 资源分配, QoS, 资源配置时间

Abstract:

Currently more and more enterprises transfer their core business and data to the cloud, and a number of the business needs elasticity service to deal with the real-time changing of workload. So there is an urgent need to evaluate elasticity, however, we lack a relatively overall evaluation method. To solve this problem, we conduct a comprehensive analysis from the perspectives of resource allocation, QoS and resource allocation time, and propose an evaluation method that can be applied to both providers and users. Moreover, we design computation models for resource allocation and resource allocation time to improve the existing penalty model. Finally, TPC-W benchmarks are tested on the CloudStack platform with two elasticity scaling strategies, namely auto-scaling and scale-out, which verifies the proposed method.

 

Key words: elasticity service, evaluation method, resource allocation, QoS, resource allocation time