• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种基于最小二乘优化的快速压缩感知算法

张永平1,张功萱2   

  1. (1.盐城工学院信息工程学院, 江苏 盐城 224051;2.南京理工大学计算机工程学院,江苏 南京 210094)
  • 收稿日期:2016-04-20 修回日期:2016-06-11 出版日期:2016-08-25 发布日期:2016-08-25
  • 基金资助:

    江苏省高校自然科学研究基金(16KJB520042);盐城工学院人才引进资助基金(xj201517);国家自然科学基金(61272420);江苏省科技企业创新基金(BC2015178);江苏省产学研研究项目(BY2014108-20);江苏省生态建材与环保装备协同创新中心项目(GX2015206);毫米波国家重点实验室项目(K201731)

A fast compressed sensing algorithm based on optimized least-square method    

ZHANG Yong-ping1,ZHANG Gong-xuan2   

  1. (1.School of Information Engineering,Yancheng Institute of Technology,Yancheng 224051;
    2.School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
  • Received:2016-04-20 Revised:2016-06-11 Online:2016-08-25 Published:2016-08-25

摘要:

压缩感知方法可以以远低于传统采样定理规定的采样率对信号采样。针对压缩感知重构信号的时间较长且随信号增大以极高速率快速增长的问题,提出了面向图像信号的快速压缩感知算法FBWRFI。FBWRFI基于最小二乘方法实现信号的优化重构,利用新定义的整体相关性度量参数选择针对图像信号的最相关原子,引入分块重构理论并重新设计分块大小和测量矩阵,有效降低了重构操作的计算复杂度和计算规模。实验结果表明,FBWRFI算法可以显著降低信号的重构时间,并使随信号增大而高速增长的重构时间的增长趋势变为线性,证明了算法的有效性。

关键词: 压缩感知, 快速重构, 最小二乘优化, 整体相关参数, 分块重构

Abstract:

The new sampling method of compressed sensing (CS) can sample signals at a very low rate that is well below the predetermined sampling rate set by the Shannon-Nyquist sampling theorem. But the reconstruction time of CS algorithms is longer and it grows rapidly with the size of signals. To overcome the abovementioned problems, we propose an algorithm, called fast block whole reconstruction for image (FBWRFI), which can quickly reconstruct image signals. The FBWRFI reconstructs signals based on the least squares method and chooses the most relevant atoms by using the overall-correlated parameters. We also introduce the theory of block reconstruction and redesign the size of blocks and the measurement matrixes. Theoretically, the FBWRFI can reduce the computation complexity and computing scale by a large margin. Experimental results show that the FBWRFI algorithm can significantly reduce reconstruction time and the growth rate of reconstruction time changing with the size of signals, which demonstrates the proposal's effectiveness.

Key words: compressed sensing, fast reconstructed, the optimized method of least-square, overall-correlated parameter, block reconstruction