• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (8): 120-124.

• 论文 • 上一篇    下一篇

变步长稀疏自适应的迭代硬阈值图像重构

段世芳,马社祥   

  1. (天津理工大学计算机与通信工程学院,天津 300384)
  • 收稿日期:2012-04-16 修回日期:2012-07-19 出版日期:2013-08-25 发布日期:2013-08-25
  • 基金资助:

    国家自然科学基金资助项目(60872064)

Variable step size sparsity adaptive
iterative hard thresholding image reconstruction 

DUAN Shifang,MA Shexiang   

  1. (School of Computer and Communication Engineering,Tianjin University of Technology,Tianjin 300384,China)
  • Received:2012-04-16 Revised:2012-07-19 Online:2013-08-25 Published:2013-08-25

摘要:

对压缩感知理论中迭代硬阈值IHT重构算法要求给定信号稀疏度的缺点,提出了一种变步长稀疏自适应迭代硬阈值VSSSAIHT算法。该算法在信号的稀疏度未知的情况下,通过相邻迭代残差的差值大小来选择合适的步长,以扩大重构信号的支撑集,不断逼近原始信号的稀疏度,逐步迭代恢复信号。仿真结果表明,与迭代硬阈值算法相比,VSSSAIHT算法改善了图像重构的质量,减少了算法运行的时间。

关键词: 压缩感知, 迭代硬阈值, 图像重构, 变步长, 稀疏自适应

Abstract:

Aiming at the shortcomings that iterative hard thresholding(IHT)reconstruction algorithm of compressed sensing theory requires the sparsity of original signal is known, a variable step size sparsity adaptive iterative hard thresholding(VSSSAIHT)algorithm was proposed. When the sparsity of original signal is unknown, the proposed algorithm according to the differences between adjacent residuals chooses appropriate step size to increase the number of support set of the reconstructed signal, approximate the sparsity of original signal gradually and restore signals by gradual iterations. Simulation results show that the VSSSAIHT algorithm, compared with the IHT algorithm, improves the quality of the reconstructed image, and reduces running time.

Key words: compressed sensing;iterative hard thresholding;image reconstruction;variable step size;sparsity adaptive