• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于分数阶达尔文粒子群FODPSO算法的图像分割

余胜威,曹中清   

  1. (西南交通大学机械工程学院,四川 成都 610031)
  • 收稿日期:2015-05-14 修回日期:2015-09-23 出版日期:2016-09-25 发布日期:2016-09-25

Image segmentation based on fractional-order Darwinian particle swarm optimization 

YU Sheng-wei,CAO Zhong-qing   

  1. (College of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
  • Received:2015-05-14 Revised:2015-09-23 Online:2016-09-25 Published:2016-09-25

摘要:

图像分割主要用于提取用户感兴趣的目标,是图像分类和识别的基础。采用一种基于分数阶达尔文粒子群算法的图像分割方法,该算法采用分数阶微积分控制系统收敛性,能够对n尺度图像进行n-1个阈值寻优计算。实验结果表明,对比于APSO、CFPSO算法,该算法具有收敛速度快、稳定性强、精度高、全局寻优等特点,有效地克服了传统算法易陷入局部最优和收敛速度慢等缺陷,可满足实际工程需求。

关键词: 多尺度分割, 分数阶达尔文粒子群算法, 类方差, 算法对比

Abstract:

Image segmentation mainly extracts the objectives users are interested in, and it is the basis for image classification and pattern recognition. We present a novel image segmentation method based on fractional-order Darwinian particle swarm optimization, called FODPSO   . The algorithm utilizes the fractional calculus strategy to control the convergence of particles and is able to determine the n-1 optimal for n-level threshold on a given image. Compared with the APSO and the CFPSO algorithms, testing results show that the FODPSO algorithm can enhance the performance in terms of convergence speed, stability, solution accuracy and global optimality, and greatly overcome the shortcomings of traditional methods, such as local optima and slow convergence speed. Hence, the FODPSO is applicable to practical projects.

Key words: multi-scale segmentation, fractional-order Darwinian particle swarm algorithm, class variance, algorithm comparison