• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于混合算法的降水集成预报研究

熊聪聪1,耿世洁1,董昊2   

  1. (1.天津科技大学计算机科学与信息工程学院,天津 300222;
    2.天津市气象局,天津 300072)
  • 收稿日期:2015-08-07 修回日期:2015-11-07 出版日期:2016-10-25 发布日期:2016-10-25
  • 基金资助:

    气象关键技术集成与应用面上项目(CMAGJ2014M05);天津市教委项目(20140803);国家自然科学基金(61402332,61402331,61272509)

Integrated precipitation forecast
based on hybrid algorithms

XIONG Cong-cong 1,GENG Shi-jie 1,DONG Hao 2   

  1. (1.College of Computer Science and Information Engineering,Tianjin University of Science &
    Technology,Tianjin 300222;
    2.Tianjin Meteorological Institute,Tianjin 300072,China)
  • Received:2015-08-07 Revised:2015-11-07 Online:2016-10-25 Published:2016-10-25

摘要:

为进一步提高降水预报的准确性,针对预报产品的多样性及其预报结果的差异性,综合粒子群算法和遗传算法的优点,将基于粒子群算法和遗传算法的混合算法应用于降水集成预报。利用天津市气象局提供的实际测量数据,通过对各模式降水预报数据的筛选处理,结合基于粒子群算法和遗传算法的混合算法集成模型,实现了多种预报模式降水数据的集成处理,并与传统方法集成及单一粒子群算法和单一遗传算法集成进行了对比研究。实验表明,混合算法的集成结果优于传统集成方法及单一粒子群算法和单一遗传算法集成,并好于任意一个模式成员。

关键词: 混合算法, 多模式集成, 遗传算法, 粒子群算法, 降水预报

Abstract:

In order to further improve the accuracy of precipitation forecast,aiming at the problems of the diversity of forecast products and differences of forecast results,we propose an integrated precipitation forecast method based on hybrid algorithms of the particle swarm optimization (PSO) and the genetic algorithm (GA).The method combines the advantages of the two,and the integrated processing of multi-model precipitation data is realized by screening and processing various real precipitation data provided by the Tianjin Municipal Meteorological Observatory.We compare our method with traditional integration methods,single PSO and single GA.Experimental results show that the proposed method is better than traditional methods,single PSO,single GA and any model member.

Key words: hybrid algorithm, multi-model integration, genetic algorithm, PSO, precipitation forecast