计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (04): 590-598.
任晟岐,宋伟
REN Sheng-qi,SONG Wei
摘要: 随着大数据与物联网技术的迅猛发展,多维时间序列数据的应用范围变得更加广泛。面对大量的非线性、高维冗余特征的复杂时间序列,传统的时间序列分析方法已经不能很好地解决多维时间序列的复杂高维特征问题,从而导致预测效果欠佳。针对以上问题,通过对遗传算法和Informer模型进行改进,并融合GRU网络,提出了GGInformer模型。该模型不仅可以有效提取多维时间序列的关键特征,而且较好地解决了长程依赖问题。为了验证模型的预测能力,选取了2种实际数据集与3种公共基准数据集进行实验,相比较Informer基准模型,GGInformer模型在5种数据集上的MSE分别降低了22%,13%,20%,23%和38%。实验结果表明,GGInformer模型可以有效解决多维时间序列数据的复杂特征提取问题,并可以进一步提高时序预测能力。