• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

标签SNPs选择及重构算法研究

赵婧1,魏彬2   

  1. (1.西京学院控制工程学院,陕西 西安 710123;2.武警工程大学电子技术系,陕西 西安 710086)
  • 收稿日期:2015-09-18 修回日期:2015-10-27 出版日期:2016-11-25 发布日期:2016-11-25
  • 基金资助:
    陕西省教育厅科研计划(15JK2187);西京学院科研基金(XJ140115);武警工程大学基础研
    究基金(WJY201518)

A tag SNPs selection and reconstruction algorithm

ZHAO Jing1,WEI Bin2   

  1. (1.School of Control Engineering,Xijing University,Xi’an 710123;
    2.Department of Electronic Technique,Armed Police Engineering University,Xi’an
    710086,China)
  • Received:2015-09-18 Revised:2015-10-27 Online:2016-11-25 Published:2016-11-25

摘要:

研究复杂疾病与SNP之间的相关性是生物信息学最为重要的任务之一,然而基因分型的巨大花费却限制了
其发展及应用。因此,选择部分有代表性的SNP(即标签SNP选择问题)进行研究,从而降低研究所需费
用就显得十分必要。近年来,已有一些算法被提出用于解决该问题,但是大多数方法在预测精度及标签
选择数目等指标方面仍未能达到实际应用的需求。据此,设计了一种前向矩阵法用于标签SNP的选择,并
用改进的PSO算法对非标签SNP进行预测。最后通过大量数据集上的实验表明了算法与常用方法相比可选
择更少的标签,同时可获得更高的预测精度,即在性能方面有了明显的提升,更适合于标签SNP选择问题
的研究。

关键词: 单核苷酸多态性, 标签, 粒子群算法

Abstract:

Obtaining the association between complex diseases and single nucleotide polymorphisms
(SNPs) is one of the most important tasks of bioinformatics.However,the huge spending
limits its development and applications,selecting a set of tag SNPs therefore becomes an
important step to reduce the cost for association study.Recently,some algorithms have been
proposed for solving this problem,but most of them cannot meet the requirements of
practical applications in terms of accuracy level and number of tags.We introduce a new
method which uses an improved particle swarm optimization algorithm to predict the nontag
SNPs,and employ an novel forwardmatrix method to select tag SNPs.To measure the quality
of the correction rate and the number of tag SNPs,we utilize several databases to test our
method,and we also compare it with other methods.The results show that the proposed method
can effectively enhance the tag SNPs prediction in terms of accuracy and a smaller subset
of tag SNPs.

Key words: single nucleotide polymorphism, tag, particle swarm optimization