• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

构造给定k错线性复杂度谱的2n周期序列

毕松松,戴小平,周建钦,王喜凤   

  1. (安徽工业大学计算机科学与技术学院,安徽 马鞍山 243002)
  • 收稿日期:2015-07-31 修回日期:2015-11-16 出版日期:2016-12-25 发布日期:2016-12-25
  • 基金资助:

    安徽省自然科学基金(1208085MF106);安徽省教育厅自然科学研究项目(KY2013Z025);安徽工业大学校青年基金(QZ201412)

Construction of 2nperiodic periodic binary sequences
with given kerror linear complexity spectrum

BI Songsong,DAI Xiaoping,ZHOU Jianqin,WANG Xifeng   

  1. (School of Computer Science and Technology,Anhui University of Technology,Maanshan 243002,China)
  • Received:2015-07-31 Revised:2015-11-16 Online:2016-12-25 Published:2016-12-25

摘要:

k错线性复杂度是度量序列密码安全性的重要指标之一。基于方体理论和GamesChan算法的逆向推导提出构造方法,构造了具有给定k错线性复杂度谱的2n周期序列。首先使用标准方体分解算法对k错线性复杂度具有第一下降点k=2、第二下降点k′=6、第三下降点k″=10的2n周期序列进行分类,再讨论每一类序列下降点线性复杂度参数之间的关系,最后给出每种参数关系下序列的计数公式以及构造过程。事实上,所使用的方法可以用于构造具有更多下降点的2n周期序列。

关键词: 线性复杂度, k错线性复杂度谱, 方体理论, 构造方法

Abstract:

The kerror linear complexity is an important stability index of pseudorandom sequences. Based on the cube theory and the reverse process of the GamesChan algorithm, we propose an constructive approach for constructing 2nperiodic binary sequences with given kerror linear complexity spectrum. We use the standard cube decomposition algorithm to classify 2nperiodic binary sequences with the kerror linear complexity of them with the first descent point k=2, the second descent point k′=6 and the third descent point k″=10. We  then discuss the relationship between linear complexity parameters in each category. Finally, we derive the counting formula and construction process on the number of the periodic sequences for each case. In fact, we can construct 2n periodic binary sequence with more descent points of kerror linear complexity by the methods.

Key words: linear complexity, kerror linear complexity spectrum, cube theory, construction approach