• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于逐维策略的布谷鸟搜索增强算法

林要华1,王维2   

  1. (1.福建农林大学计算机与信息学院,福建 福州 350002;2.61198部队,福建 福州 350003)
  • 收稿日期:2016-04-13 修回日期:2016-10-18 出版日期:2017-01-25 发布日期:2017-01-25
  • 基金资助:

    福建省自然科学基金(2016J01280);福建省教育厅B类项目(JB09114)

An enhanced cuckoo search algorithm based
on dimension by dimension strategy

LIN Yaohua1,WANG Wei2   

  1. (1.College of Computer and Information Technology,Fujian Agriculture and Forestry University,Fuzhou 350002;
    2.Troop 61198,Fuzhou 350003,China)
  • Received:2016-04-13 Revised:2016-10-18 Online:2017-01-25 Published:2017-01-25

摘要:

布谷鸟搜索算法迭代运用Lévy Flights随机走动和Biased随机走动发现新个体的各维信息。当个体所有维信息生成后,算法将这些信息合成为个体并评价。在这种情况下,由于个体各维之间存在相互干扰,一些部分维进化的个体可能被放弃,从而影响算法的收敛速度以及求精能力。提出的布谷鸟搜索增强算法采用逐维评价策略接收一些部分进化的个体,可进一步增强算法的收敛速度和求精能力。在算法中,逐维评价策略作为局部搜索技术镶嵌在两个随机走动部件之后,并随机选择一些个体进行逐维更新后进行评价。实验结果说明逐维评价策略总体上能够有效且较好地改善算法的求解性能和收敛速度。
 

关键词: 布谷鸟搜索算法, 逐维评价, 逐维改进, 局部搜索

Abstract:

The cuckoo search algorithm utilizes Lévy Flights random walk and Biased random walk iteratively to search for the dimensional information of each new individual. After generating all dimensional information of each individual, the algorithm combines them as an individual and then evaluates it. Thus, the individuals with good dimensional information can be abandoned because of dimensional interference, which affects the convergence speed and refining capacity. We propose an enhanced cuckoo search algorithm  based on the strategy of dimension by dimension evaluation to accept those with good dimensional information, which can enhance the convergence speed and refining capacity. In the proposed approach, the strategy of dimension by dimension evaluation is adopted as a local search technique. We embed it behind the two random walks, and evaluate new individuals after each dimension is generated from those randomly selected individuals. Experimental results show that the dimension by dimension evaluation strategy can generally and effectively improve the performance of solution and the convergence speed.

Key words: cuckoo search algorithm, dimension by dimension evaluation, dimension by dimension improvement, local searc