• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    

一种面向多模函数改进的果蝇优化算法

张磊1,刘成忠2   

  1. (1.甘肃农业大学工学院,甘肃 兰州 730070;2.甘肃农业大学信息科学技术学院,甘肃 兰州 730070)
  • 收稿日期:2015-11-04 修回日期:2016-01-05 出版日期:2017-01-25 发布日期:2017-01-25
  • 基金资助:

    甘肃省自然科学基金(1208RJZA133);甘肃省干旱生境作物学重点实验室开放基金(GSCS201215);甘肃农业大学青年导师基金(GAUQNDS201213)

An improved fruit fly optimization
algorithm for multimodal function
 

ZHANG Lei1,LIU Chengzhong2   

  1. (1.College of Engineering,Gansu Agricultural University,Lanzhou 730070;
    2.College of Information Science and Technology,Gansu Agricultural University,Lanzhou 730070,China)
  • Received:2015-11-04 Revised:2016-01-05 Online:2017-01-25 Published:2017-01-25

摘要:

为将果蝇优化算法有效应用在多模函数优化问题中,设计了一种优化多模函数的果蝇优化算法—基于佳点集和小生境技术的混合果蝇优化算法。首先引入数论中的佳点集概念构造初始种群,使其较均匀地分布在可行域中并且产生的模式多样性比随机分布更好,提高了算法的搜索能力及效率和稳定性;其次用小生境技术改进算法的搜索模式,更好地维持了种群的多样性使种群能快速定位较多的峰;再通过小生境熵来量化群体的多样性并选择进化方向,当小生境熵低于设定的阈值时,结合佳点搜索产生新群体给以扰动,以维持种群的多样性,否则对各个峰进行精细搜索。对七个测试函数分别进行两类仿真,结果表明,该算法不仅能够高效且高精度地找到全局极值而且能够以较高的精度定位到所有全局极值和多个次优极值,显示了较强的多峰搜索能力。

关键词: 果蝇优化算法, 多模函数优化, 佳点集, 小生境技术, 小生境熵

Abstract:

In order to effectively apply fruit fly optimization algorithm in multimodal function optimization, we propose an improved fruit fly optimization algorithm which optimizes multimodal function―a mixed fruit fly optimization algorithm based on the good point set and niche technology. Firstly, we employ the concept of good point set to construct the initial population and distribute it more evenly in the feasible region, which can produce a better pattern diversity than random distribution, improve the search ability, efficiency and stability of the algorithm. Secondly, we adopt the niche technology to improve the algorithm's search mode and better maintain the diversity of the population, thus enabling the population to locate peaks quickly. The niche entropy can quantify the diversity of the population and choose the direction of evolution. When the niche entropy is lower than the set threshold, together with the good point searching, a new group is generated, which provides perturbation and maintains population diversity. Otherwise, searches for each peak are finely done. We carry out two kinds of simulations on 7 test functions, and the results show that the proposed algorithm cannot only find the global extreme values with high efficiency and accuracy, but also locate all the global extreme values and multiple sub optimal extremum at a higher precision, and it shows strong multipeak search ability.

Key words: fruit fly optimization algorithm, multimodal function optimization, good point set, niche technology, niche entropy