• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于动态贝叶斯网络的健壮报头压缩算法

周伟1,赵宝康1,刘波1,吴少康1,李琰1,刘华1,2   

  1. (1.国防科学技术大学计算机学院,湖南 长沙 410073;2.75835部队,广东 广州 510600)
  • 收稿日期:2016-08-05 修回日期:2016-10-07 出版日期:2017-01-25 发布日期:2017-01-25
  • 基金资助:

    国家自然科学基金(61202488)

A robust header compression algorithm
based on dynamic Bayesian network

ZHOU Wei1,ZHAO Baokang1,LIU Bo1,WU Shaokang1,LI Yan1,LIU Hua1,2   

  1. (1.College of Computer,National University of Defense Technology,Changsha 410073;
    2.Troop 75835,Guangzhou 510600,China)
  • Received:2016-08-05 Revised:2016-10-07 Online:2017-01-25 Published:2017-01-25

摘要:

空间飞行系统采用IP协议承载,相比传统的无线通信方式具有更高的数据速率和应用灵活性。为了解决低带宽、高误码率等问题,需要采用高效可靠的报头压缩算法来提高有效载荷效率。但是,由于无线环境的复杂多变,以及空间飞行系统的高速机动性,无线信道传输质量会发生动态的变化,一般的压缩算法无法很好地适应这种时变特性。为此,提出一种基于动态贝叶斯网络的健壮报头压缩算法DBROHC。DBROHC根据解压端离散的历史丢包观测序列,动态调整关键压缩参数,达到压缩率和健壮性的较好均衡。仿真结果表明,与传统的健壮压缩算法相比,该算法在复杂无线链路中健壮性更优和有效带宽更大。

关键词: 报头压缩, 健壮性, 动态贝叶斯网络

Abstract:

Space flight systems use the IP protocol to carry information, which has  a higher data rate and application flexibility in comparison with traditional wireless communication. In order to solve the problems of lowbandwidth and high error rate, we need an efficient and reliable header compression algorithm to improve payload efficiency. However, due to the complex wireless environment, as well as highspeed maneuverability of space flight systems, the transmission quality of the radio channel changes dynamically, and the protocol cannot be better suited for such a timevarying characteristic. We propose a robust header compression algorithm based on dynamic Bayesian network named DBROHC. According to discrete historical loss packet observation sequence of the decompressor, the algorithm can dynamically adjust key parameters to achieve better balanced compression ratio and robustness. Simulation results show that, compared with the conventional robust compression algorithm, the proposed algorithm is more suitable for complex wireless links.

Key words: header compression, robust, dynamic Bayesian network